Energy Storage Electrode Manufacturing (ELEMENT)
储能电极制造(ELEMENT)
基本信息
- 批准号:EP/P026818/1
- 负责人:
- 金额:$ 12.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This EPSRC First Grant project will concentrate on the use of so-called 'Electrophoretic Deposition (EPD)' to manufacture energy storage electrodes with spatially distributed properties; in order to further advance the performance of electrochemical power devices. The research is aimed at realising a full capacity utilisation while meeting all relevant power extractions. This will be achieved by developing new electrode designs, manufacture them at a meaningful scale, microstructural characterisation and energy storage measurement. Electrodes built in this way will have their energy storage functions met more rationally than conventional monolithic design. Whilst in-depth investigation of materials chemistry is beyond the scope of this manufacturing centred project, the research will perform exemplary experiments involving Nb2O5 and C, in Li-ion battery context. The improved electrodes will be designed, manufactured and validated in the UK's first full battery prototyping lines in a non-commercial environment at the WMG Energy Innovation Centre. Specifically, this project directly challenges the existing manufacturing paradigm in which electrode designs are driven by outdated manufacturing considerations, such as the casting and calendaring of powder-based viscous slurry. The existing technologies, which are clearly scalable and robust, dominate today's electrode manufacturing for batteries and supercapacitors devices. But, the manufacturing approach greatly limit the 'usable' energy density (Wh/kg) and 'usable' capacity (Ah) at device cell level and creates an undesirable viscous circle. This is because calendaring powder-based electrodes for high fraction of active materials results in pore networks with high tortuosity, filled with undesirable quantity of inactive materials such as polymeric binders and electrical conductivity enhancer carbon black particles. In this context, the electrodes must then be thin for high rate. But, thin electrodes result in high fraction of inactive materials; which consequently lowers the maximum achievable 'usable' energy density and 'usable' capacity. A real-world need therefore persists to expand our knowledge about realising high density active material electrodes, whilst having low pore tortuosity and of adequate electrical conductivity, but is less affected by the demanding manufacturing requirements and engineering constraints.The proposed EPD approach is sufficiently generic that it can be applied for any energy storage materials and their chemistries, and the developed tools, processes and methodologies are common across scale can be of direct relevance for systematic optimisation of any existing Li-ion batteries, beyond Li-ion chemistries (e.g., Na-ion, Mg-ion) and higher energy density electrochemical capacitors (based on metal oxides).In short, this project will explore a new direction: the scientific challenges and technological opportunities enabled by the design of 'high density active material electrodes of spatially distributed properties' through modern approaches in electrochemical manufacturing. The project outcomes are expected to impact scientific understandings of how charged materials and electric field interact, and will create improved electrode designs for future energy storage.
该EPSRC First Grant项目将致力于使用所谓的“电沉积(EPD)”来制造具有空间分布特性的储能电极,以进一步提高电化学功率器件的性能。这项研究的目的是实现产能的充分利用,同时满足所有相关的电力提取。这将通过开发新的电极设计、大规模制造、微观结构表征和储能测量来实现。以这种方式建造的电极将比传统的整体式设计更合理地满足其储能功能。虽然对材料化学的深入研究超出了这个以制造为中心的项目的范围,但该研究将在锂离子电池环境中进行涉及Nb2O5和C的示范实验。改进后的电极将在WMG能源创新中心的非商业环境中,在英国第一条全电池样机生产线上进行设计、制造和验证。具体地说,该项目直接挑战了现有的制造模式,在现有的制造模式中,电极设计是由过时的制造考虑因素驱动的,例如粉末粘性浆料的铸造和压延。现有的技术显然是可扩展和强大的,主导着当今电池和超级电容器设备的电极制造。但是,这种制造方法极大地限制了器件单元级的“可用”能量密度(Wh/kg)和“可用”容量(Ah),并造成了一个不受欢迎的粘性循环。这是因为对高含量活性材料的粉末基电极进行压延会导致孔道网络具有高度的曲折性,充满了不希望看到的大量非活性材料,如聚合物粘结剂和导电增强剂炭黑颗粒。在这种情况下,电极必须是薄的才能获得高的倍率。但是,薄电极会产生高比例的非活性物质,从而降低了可实现的最大“可用”能量密度和“可用”容量。因此,现实世界需要继续扩展我们关于实现高密度活性材料电极的知识,同时具有低孔弯曲度和足够的导电性,但受苛刻的制造要求和工程约束的影响较小。建议的EPD方法足够通用,它可以应用于任何储能材料及其化学,并且所开发的工具、工艺和方法跨规模通用,可以直接与任何现有的锂离子电池的系统优化相关,超越锂离子化学(例如,钠离子、镁离子)和更高能量密度的电化学电容器(基于金属氧化物)。简言之,该项目将探索一个新的方向:通过现代电化学制造方法设计具有空间分布特性的高密度活性材料电极所带来的科学挑战和技术机遇。该项目的成果预计将影响对带电材料和电场如何相互作用的科学理解,并将为未来的能量存储创造更好的电极设计。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Heteroatom-doped core/shell carbonaceous framework materials: synthesis, characterization and electrochemical properties
- DOI:10.1039/c8nj05193c
- 发表时间:2019-04
- 期刊:
- 影响因子:3.3
- 作者:Yutao Zhou;Qianye Huang;C. Low;R. Walton;T. McNally;C. Wan
- 通讯作者:Yutao Zhou;Qianye Huang;C. Low;R. Walton;T. McNally;C. Wan
Full Cell Lithium-Ion Battery Manufacture by Electrophoretic Deposition
电泳沉积法制造全电池锂离子电池
- DOI:10.1002/batt.202200441
- 发表时间:2022
- 期刊:
- 影响因子:5.7
- 作者:Bree G
- 通讯作者:Bree G
Practical aspects of electrophoretic deposition to produce commercially viable supercapacitor energy storage electrodes.
- DOI:10.1039/d0ra09197a
- 发表时间:2021-06-09
- 期刊:
- 影响因子:3.9
- 作者:Chakrabarti BK;John Low CT
- 通讯作者:John Low CT
Modern practices in electrophoretic deposition to manufacture energy storage electrodes
- DOI:10.1002/er.8103
- 发表时间:2022-05
- 期刊:
- 影响因子:4.6
- 作者:B. Chakrabarti;Metin Gençten;Gerard Bree;A. Dao;D. Mandler;C. Low
- 通讯作者:B. Chakrabarti;Metin Gençten;Gerard Bree;A. Dao;D. Mandler;C. Low
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chee Tong John Low其他文献
Practical Aspect of Electrophoretic Deposition to Produce Commercially Viable Activated Carbon Supercapacitor Electrode
电泳沉积生产商业上可行的活性炭超级电容器电极的实际应用
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
B. Chakrabarti;Evangelos Kalamaras;Chee Tong John Low - 通讯作者:
Chee Tong John Low
Directional regulation on single-molecule redox-targeting reaction in neutral zinc-iron flow batteries
中性锌铁液流电池中单分子氧化还原靶向反应的定向调控
- DOI:
10.1016/j.joule.2024.09.015 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:35.400
- 作者:
Yichong Cai;Hang Zhang;Tidong Wang;Shibo Xi;Yuxi Song;Sida Rong;Jin Ma;Zheng Han;Chee Tong John Low;Qing Wang;Ya Ji - 通讯作者:
Ya Ji
A highly selective electrochemical sensor by using bimetallic metal organic framework for the detection of 3-Monochloropropane-1,2-diol esters (3-MCPDEs)
一种利用双金属金属有机框架检测3 - 一氯丙二醇酯(3 - MCPDEs)的高选择性电化学传感器
- DOI:
10.1016/j.jfca.2025.107702 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:4.600
- 作者:
Sharifah Shahira Syed Putra;Md. Shalauddin;Shamima Akhter;Wan Jefrey Basirun;Amal A.M. Elgharbawy;Syed Rahin Ahmed;Seshasai Srinivasan;Amin Reza Rajabzadeh;Adeeb Hayyan;Yousef Mohammed Alanazi;Barun Kumar Chakrabarti;Chee Tong John Low - 通讯作者:
Chee Tong John Low
Chee Tong John Low的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chee Tong John Low', 18)}}的其他基金
Graphene Electrodes for Automotive Supercapacitor Energy Storage (GRAPHELEC)
用于汽车超级电容器储能的石墨烯电极 (GRAPHELEC)
- 批准号:
EP/M507738/1 - 财政年份:2015
- 资助金额:
$ 12.84万 - 项目类别:
Research Grant
相似国自然基金
面向in-storage智能计算的固态硬盘缓存管理优化
- 批准号:
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
SHIELD - Self-Healing Electrode for energy storage Devices
SHIELD - 用于储能设备的自愈电极
- 批准号:
EP/Y028163/1 - 财政年份:2023
- 资助金额:
$ 12.84万 - 项目类别:
Fellowship
Using Mn-Co containing compounds formed through biological processes as precursors for development of electrode materials for energy storage applicat
利用生物过程形成的含锰钴化合物作为前体开发储能应用电极材料
- 批准号:
2875220 - 财政年份:2023
- 资助金额:
$ 12.84万 - 项目类别:
Studentship
High-pressure synthesis of novel iron-containing fluorides /oxyfluorides as electrode materials for energy storage
高压合成新型含铁氟化物/氟氧化物作为储能电极材料
- 批准号:
21F21727 - 财政年份:2021
- 资助金额:
$ 12.84万 - 项目类别:
Grant-in-Aid for JSPS Fellows
SBIR Phase I: Eco-friendly Production of Carbon Nanosheets for Ultra High Energy Storage Electrode Application
SBIR第一阶段:用于超高储能电极应用的碳纳米片的环保生产
- 批准号:
1940375 - 财政年份:2020
- 资助金额:
$ 12.84万 - 项目类别:
Standard Grant
EAGER: Flame-Assisted Chemical Vapor Deposition for Energy Storage Electrode Fabrication
EAGER:用于储能电极制造的火焰辅助化学气相沉积
- 批准号:
1841357 - 财政年份:2019
- 资助金额:
$ 12.84万 - 项目类别:
Standard Grant
Grid-scale energy storage using zinc-air fuel cells with nanostructured electrode
使用具有纳米结构电极的锌空气燃料电池的电网规模储能
- 批准号:
506448-2017 - 财政年份:2019
- 资助金额:
$ 12.84万 - 项目类别:
Strategic Projects - Group
Exploration and Fast Evaluation of Novel Electrode Materials Towards Development of Post-Lithium-Ion Batteries for Energy Storage Systems
新型电极材料的探索和快速评估,以开发用于储能系统的后锂离子电池
- 批准号:
18H01427 - 财政年份:2018
- 资助金额:
$ 12.84万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Grid-scale energy storage using zinc-air fuel cells with nanostructured electrode
使用具有纳米结构电极的锌空气燃料电池的电网规模储能
- 批准号:
506448-2017 - 财政年份:2018
- 资助金额:
$ 12.84万 - 项目类别:
Strategic Projects - Group
Novel Electrode Materials Based Zn-Air Batteries for Energy Storage: From Fundamental Aspects to System Engineering
用于储能的新型电极材料锌空气电池:从基础方面到系统工程
- 批准号:
339689134 - 财政年份:2017
- 资助金额:
$ 12.84万 - 项目类别:
Research Grants
Grid-scale energy storage using zinc-air fuel cells with nanostructured electrode
使用具有纳米结构电极的锌空气燃料电池的电网规模储能
- 批准号:
506448-2017 - 财政年份:2017
- 资助金额:
$ 12.84万 - 项目类别:
Strategic Projects - Group














{{item.name}}会员




