STARK HOLE BURNING SPECTROSCOPY OF MODEL HEMES
HEME 模型的 STARK 孔燃烧光谱
基本信息
- 批准号:3777999
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The research described in this proposal is a continuation of a study of
biologically important molecules in the solid state, with respect to
their electronic excited state properties, photochemistry and dynamics,
using a combination of optical hole-burning and the Stark effect. When
an absorbing molecule is dissolved in a matrix, its electronic spectrum
is inhomogeneously broadened due to variations in the local environments.
If a laser which has a bandwidth much less than the inhomogeneous band
width is used to excite these absorbers, it is possible to burn an
optical hole in the spectrum. Holes result from photochemistry,
transient storage or molecular reorientation. Since the hole widths are
often measured in MHz, when coupled with the Stark effect, this becomes
a very high resolution probe of molecular properties.
The long-term objectives of this research are to extract detailed excited
state information (e.g. dipole moments, polarizabilities, geometry) from
isolated porphyrin molecules using Stark hole-burning method and develop
and extend the techniques so that it can be used as a high resolution
probe on biological molecules in more physiologically realistic
environments. Specifically we intend to continue our study of simple
free base and metalloporphyrins in well defined n-alkane crystal
matrices. Then the study will be extended to use randomly oriented
porphyrins in glasses. Finally, we will apply Stark hole-burning to more
complex biological molecules (e.g. heme) in low temperature glasses and
solutions.
The methodology involves the growth of single mixed (porphyrin/n-alkane)
crystals and making low temperature glass solutions. The sample is
placed between electrodes and immersed in liquid N2 or He and an
absorption or emission spectrum obtained. Optical holes are burned and
scanned with a narrow band laser; the Stark field is applied either DC
or pulsed depending on the need. The subsequent electric field effects
are then related to molecular excited state properties and dynamics.
本提案中描述的研究是以下研究的继续
固态中具有重要生物学意义的分子,涉及
它们的电子激发态性质,光化学和动力学,
使用光学烧孔和斯塔克效应的组合。什么时候
吸收分子溶解在基质中,它的电子光谱
由于当地环境的变化而不均匀地扩大。
如果一个激光的带宽远远小于非均匀频带
宽度被用来激励这些吸收体,则有可能燃烧
光谱中的光学空穴。小孔是由光化学作用造成的,
瞬时存储或分子重定向。因为孔的宽度是
通常以兆赫为单位测量,再加上斯塔克效应,这就变成了
一种非常高分辨率的分子性质探针。
这项研究的长期目标是提取详细的兴奋
状态信息(例如偶极矩、极化率、几何形状)
斯塔克烧孔法分离卟啉分子及其研究进展
并对技术进行扩展,以便将其用作高分辨率
更具生理学真实感的生物分子探索
环境。具体地说,我们打算继续研究Simple
正构烷烃晶体中的游离碱和金属卟啉
矩阵。然后将研究扩展到使用随机定向
玻璃杯里的卟啉。最后,我们将把Stark烧洞应用到更多
低温玻璃中的复杂生物分子(例如,血红素)和
解决办法。
该方法涉及单一混合(卟啉/正构烷烃)的生长。
结晶和制造低温玻璃溶液。样品是
放置在电极之间,并浸入液态氮气或He和An
获得吸收光谱或发射光谱。光学孔洞被烧毁,
用窄带激光扫描;斯塔克场应用于DC
或根据需要进行脉冲治疗。随后的电场效应
然后与分子激发态的性质和动力学有关。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN R LOMBARDI其他文献
JOHN R LOMBARDI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN R LOMBARDI', 18)}}的其他基金
相似国自然基金
Probing matter-antimatter asymmetry with the muon electric dipole moment
- 批准号:
- 批准年份:2020
- 资助金额:30 万元
- 项目类别:
相似海外基金
Electron electric dipole moment search by using polarized ultracold molecule s
利用极化超冷分子进行电子电偶极矩搜索
- 批准号:
23K20858 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Ultracold EEDM - Measuring The Electron's Electric Dipole Moment Using Ultracold Molecules
超冷 EEDM - 使用超冷分子测量电子的电偶极矩
- 批准号:
EP/X030180/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
RUI: Search for the Electric Dipole Moment of the Neutron (nEDM)
RUI:搜索中子的电偶极矩 (nEDM)
- 批准号:
2311054 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Copper-based Perovskites with Horizontal Transition Dipole Moment for Highly Efficient Light-emitting Diodes
具有水平跃迁偶极矩的铜基钙钛矿用于高效发光二极管
- 批准号:
EP/X025764/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship
Development of a Spin Analyzer for Neutron Electric Dipole Moment Search with Ultra Cold Neutron
超冷中子中子电偶极矩搜索自旋分析仪的研制
- 批准号:
22H01236 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Probing PeV-scale new physics using the electron electric dipole moment
利用电子电偶极矩探索 PeV 尺度的新物理
- 批准号:
SAPPJ-2019-00057 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Subatomic Physics Envelope - Project
Argon Crystals for the Electron Electric Dipole Moment (eEDM) Search with the EDM^3 Collaboration
通过 EDM^3 协作进行电子电偶极矩 (eEDM) 搜索的氩晶体
- 批准号:
RGPIN-2022-04603 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Ultracold Neutron Electric Dipole Moment Experiment
超冷中子电偶极矩实验
- 批准号:
SAPPJ-2019-00031 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Subatomic Physics Envelope - Project
Ultracold Neutron Electric Dipole Moment Experiment
超冷中子电偶极矩实验
- 批准号:
SAPPJ-2019-00031 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Subatomic Physics Envelope - Project
Magnetometry for measuring the electric dipole moment of the electron
用于测量电子电偶极矩的磁力计
- 批准号:
ST/W005476/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant