Tailorable & Adaptive Connected Digital Additive Manufacturing (TACDAM)

可量身定制

基本信息

  • 批准号:
    EP/P030262/1
  • 负责人:
  • 金额:
    $ 28.24万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

The TACDAM project will remove the the final hurdles for the adoption of additive manufacturing in automotive applications in a staged low-mid-high volume approach. The essential requisite for this, besides having the right portfolio of products, is meeting automotive expectation of low cost and high quality, the delivery of which is the primary objective of the project. Although the biggest single contributor to product cost across the value chain has been Additive Manufacturing (AM) build time it is expected that by the end of 2017 substantial further increases will have been made. A result of this is that costs associated to pre- and post-processing are becoming relatively much more significant. Key enabling technologies, that will be developed by The University of Sheffield, include the creation of model-based approaches, that are used to optimise the part life-cycle in the manufacturing environment. This includes the identification of key factors in the value-chain, and data-driven methodologies that will 'learn' from data towards the better fundamental understanding of the process.
TACDAM项目将以分阶段的低-中-高批量方法消除在汽车应用中采用增材制造的最后障碍。除了拥有合适的产品组合外,这一点的基本要求是满足汽车对低成本和高质量的期望,交付是该项目的主要目标。虽然整个价值链中产品成本的最大单一贡献者是增材制造(AM)的构建时间,但预计到2017年底将进一步大幅增加。其结果是,与预处理和后处理相关的成本变得相对重要得多。关键使能技术将由谢菲尔德大学开发,包括创建基于模型的方法,用于优化制造环境中的零件生命周期。这包括确定价值链中的关键因素,以及从数据中“学习”以更好地理解流程的数据驱动方法。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
General Type-2 Radial Basis Function Neural Network: A Data-Driven Fuzzy Model
  • DOI:
    10.1109/tfuzz.2018.2858740
  • 发表时间:
    2019-02-01
  • 期刊:
  • 影响因子:
    11.9
  • 作者:
    Rubio-Solis, Adrian;Melin, Patricia;Panoutsos, George
  • 通讯作者:
    Panoutsos, George
A data-driven approach for predicting printability in metal additive manufacturing processes
用于预测金属增材制造工艺中可印刷性的数据驱动方法
Evolutionary Extreme Learning Machine for the Interval Type-2 Radial Basis Function Neural Network: A Fuzzy Modelling Approach
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Panoutsos其他文献

A novel pipeline employing deep multi-attention channels network for the autonomous detection of metastasizing cells through fluorescence microscopy
  • DOI:
    10.1016/j.compbiomed.2024.109052
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michail Mamalakis;Sarah C. Macfarlane;Scott V. Notley;Annica K.B. Gad;George Panoutsos
  • 通讯作者:
    George Panoutsos
Multi-layer process control in selective laser melting: a reinforcement learning approach
  • DOI:
    10.1007/s10845-024-02548-3
  • 发表时间:
    2024-12-18
  • 期刊:
  • 影响因子:
    7.400
  • 作者:
    Stylianos Vagenas;Taha Al-Saadi;George Panoutsos
  • 通讯作者:
    George Panoutsos
Self-driving laboratory platform for many-objective self-optimisation of polymer nanoparticle synthesis with cloud-integrated machine learning and orthogonal online analytics
具有云集成机器学习和正交在线分析的聚合物纳米粒子合成多目标自优化自动驾驶实验室平台
  • DOI:
    10.1039/d5py00123d
  • 发表时间:
    2025-02-13
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Stephen T. Knox;Kai E. Wu;Nazrul Islam;Roisin O'Connell;Peter M. Pittaway;Kudakwashe E. Chingono;John Oyekan;George Panoutsos;Thomas W. Chamberlain;Richard A. Bourne;Nicholas J. Warren
  • 通讯作者:
    Nicholas J. Warren
Data-Driven Granular Computing Systems and Applications
  • DOI:
    10.1007/s41066-020-00222-6
  • 发表时间:
    2020-03-19
  • 期刊:
  • 影响因子:
    0.000
  • 作者:
    Ruidan Su;George Panoutsos;Xiaodong Yue
  • 通讯作者:
    Xiaodong Yue
Information-theoretic sensor placement for large sewer networks
  • DOI:
    10.1016/j.watres.2024.122718
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    George Crowley;Simon Tait;George Panoutsos;Vanessa Speight;Iñaki Esnaola
  • 通讯作者:
    Iñaki Esnaola

George Panoutsos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Fostering Adaptive Governance and Resilience in Local Communities of Central Eurasia: From fragmented pasts to connected futures?
促进欧亚大陆中部当地社区的适应性治理和复原力:从支离破碎的过去到相互联系的未来?
  • 批准号:
    EP/T024801/1
  • 财政年份:
    2020
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Research Grant
Tailorable and Adaptive Connected Digital Additive Manufacturing (TACDAM)
可定制和自适应互联数字增材制造 (TACDAM)
  • 批准号:
    EP/P03280X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Research Grant
Tailorable and Adaptive Connected Digital Additive Manufacturing
可定制和自适应的互联数字增材制造
  • 批准号:
    103279
  • 财政年份:
    2017
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Collaborative R&D
Tailorable and Adaptive Connected Digital Additive Manufacturing
可定制和自适应的互联数字增材制造
  • 批准号:
    EP/P030785/1
  • 财政年份:
    2017
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Research Grant
EARS: Adaptive Behavioral Responses for Dynamic Spectrum Access-Based Connected Vehicle Networks
EARS:基于动态频谱访问的互联车辆网络的自适应行为响应
  • 批准号:
    1547291
  • 财政年份:
    2016
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Standard Grant
Adaptive signal control system using connected vehicle data
使用互联车辆数据的自适应信号控制系统
  • 批准号:
    477481-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Engage Grants Program
NeTS: Small: Adaptive Data Preservation in Intermittently Connected Sensor Networks: A Unified Storage-Energy Optimization Approach
NeTS:小型:间歇连接传感器网络中的自适应数据保存:统一的存储能量优化方法
  • 批准号:
    1419952
  • 财政年份:
    2013
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Standard Grant
NeTS: Small: Adaptive Data Preservation in Intermittently Connected Sensor Networks: A Unified Storage-Energy Optimization Approach
NeTS:小型:间歇连接传感器网络中的自适应数据保存:统一的存储能量优化方法
  • 批准号:
    1248315
  • 财政年份:
    2012
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Standard Grant
NeTS: Small: Adaptive Data Preservation in Intermittently Connected Sensor Networks: A Unified Storage-Energy Optimization Approach
NeTS:小型:间歇连接传感器网络中的自适应数据保存:统一的存储能量优化方法
  • 批准号:
    1116849
  • 财政年份:
    2011
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Standard Grant
A Theory of Fault-Tolerant Adaptive and Minimal Routing in Mesh-Connected Multicomputers
网状连接多机容错自适应最小路由理论
  • 批准号:
    9900646
  • 财政年份:
    1999
  • 资助金额:
    $ 28.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了