Understanding biopolymer clusters formation in microalgae systems for wastewater: application to membrane photo-bioreactors
了解废水微藻系统中生物聚合物簇的形成:在膜光生物反应器中的应用
基本信息
- 批准号:EP/R012237/1
- 负责人:
- 金额:$ 12.84万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Microalgae attract considerable interest due to their potential for the production of value-added products such as pharmaceuticals, nutraceuticals, animal feed, cosmetics and biodiesel. Although the applications for high value products are viable, applications for biodiesel production, with a lower value but much greater market potential, are still not economically viable due to the high cost of algal biomass production. The costs of growth medium and algal biomass harvesting have specifically been identified as the major contributions to the total cost of production and will have to be significantly reduced to enable widespread application. The use of wastewater as an algae growing medium has however been shown to be a sustainable low cost option as it provides the nutrients needed for algae growth while simultaneously delivering wastewater remediation. Applied to wastewater treatment, microalgae are proven to efficiently remove nutrients (phosphorus and nitrogen) to very low levels and also demonstrated potential to remove hazardous chemicals such as heavy metals and organic micro-pollutants. Essentially, microalgae can be used for wastewater pollution remediation whilst providing added value through the production of algal biomass. However, algae harvesting remains the major limitation and solving this problem will be the key to deliver the true potential of these technologies.Membrane photobioreactors, which are integrated systems combining an algal photobioreactors with a membrane for direct separation of the algal biomass have been identified as promising alternatives to more conventional algae systems as they generally have the same advantages as typical algal photobioreactors but the integrated membrane provides complete retention of algae cells and decoupled biomass and hydraulic retention times. This enables increased biomass concentrations and consequently intensification of the process with significantly shorter contact times. While the membrane facilitates algal biomass harvesting, as for all membrane systems, fouling becomes the main limitation. The accumulation on the membrane of the algal biomass and any organic and inorganic compounds present in the water will affect its hydraulic performance and contribute to an increase in energy demand and costs. Membrane fouling is inevitable so it will be critical to control its formation through the implementation of mitigation measures to obtain sustainable operation and to make the technology economically viable.Previous studies on membrane fouling by microalgae have highlighted the highly fouling nature of algogenic organic matter and more specifically the soluble biopolymers excreted by microalgae. Importantly, biopolymers have been shown to be the main contributors to irreversible fouling as they can penetrate in the pores of the membrane and block the channels, significantly affecting membrane filtration performance and cleaning requirements. Interestingly, biopolymers have also been shown to naturally aggregate in some systems. Promoting clustering would then enable to transfer the highly fouling compounds from the soluble to the particulate fraction in which case the biopolymer clusters formed can no longer enter the pores of the membrane and will only contribute to the formation of cake layer on the surface of the membrane, which is essentially reversible. This will then lead to a reduced impact on the filtration performance and decreased costs of operation therefore making the technology economically viable. The aim of this research is then to develop a sustainable and economically viable algae based technology for wastewater treatment and algal biomass production for resource recovery by establishing the basis for controlled biopolymer clusters formation in membrane photo-bioreactors treating wastewater and demonstrating the beneficial impact of the particulate biopolymer assemblages on the reversibility of membrane fouling.
微藻由于具有生产诸如药品、营养保健品、动物饲料、化妆品和生物柴油等增值产品的潜力而引起了相当大的兴趣。虽然高价值产品的应用是可行的,但由于藻类生物质生产的高成本,生物柴油生产的应用价值较低,但市场潜力大得多,在经济上仍然不可行。生长介质和藻类生物量的收集费用已被特别确定为对生产总费用的主要贡献,必须大大减少,以便能够广泛应用。然而,利用废水作为藻类生长介质已被证明是一种可持续的低成本选择,因为它提供了藻类生长所需的营养物质,同时提供了废水修复。应用于废水处理,微藻被证明可以有效地去除营养物质(磷和氮)到非常低的水平,也显示出去除有害化学物质如重金属和有机微污染物的潜力。从本质上讲,微藻可以用于废水污染修复,同时通过生产藻类生物量提供附加价值。然而,藻类收集仍然是主要的限制,解决这个问题将是发挥这些技术真正潜力的关键。膜光生物反应器是将藻类光生物反应器与用于直接分离藻类生物质的膜相结合的集成系统,已被认为是更传统藻类系统的有前途的替代品,因为它们通常具有与典型藻类光生物反应器相同的优点,但集成膜提供了完全保留藻类细胞和解耦的生物量和水力保留时间。这可以增加生物量浓度,从而在显著缩短接触时间的情况下加强这一过程。虽然膜有利于藻类生物量的收集,但对于所有的膜系统来说,污染成为主要的限制。藻类生物量和水中存在的任何有机和无机化合物在膜上的积累将影响其水力性能,并导致能源需求和成本的增加。膜污染是不可避免的,因此通过实施缓解措施来控制膜污染的形成,以获得可持续的运行,并使该技术在经济上可行是至关重要的。以往关于微藻对膜污染的研究强调了藻源有机物的高污染性,特别是微藻分泌的可溶性生物聚合物。重要的是,生物聚合物已被证明是造成不可逆污染的主要原因,因为它们可以渗透到膜的毛孔中并阻塞通道,从而显著影响膜的过滤性能和清洁要求。有趣的是,生物聚合物也被证明在某些系统中自然聚集。在这种情况下,形成的生物聚合物团簇不能再进入膜的孔隙,只会在膜表面形成饼层,这基本上是可逆的。这将减少对过滤性能的影响,降低操作成本,从而使该技术在经济上可行。本研究的目的是通过建立在膜光生物反应器中处理废水的可控生物聚合物簇形成的基础,并展示颗粒生物聚合物组合对膜污染可逆性的有益影响,从而开发一种可持续的、经济上可行的基于藻类的废水处理和藻类生物质生产技术,以回收资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc Pidou其他文献
UV/TiOsub2/sub photocatalysis as post-treatment of anaerobic membrane bioreactor effluent for reuse
紫外线/二氧化钛光催化作为厌氧膜生物反应器出水回用的后处理
- DOI:
10.1016/j.jenvman.2024.120628 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:8.400
- 作者:
Yu Huang;Paul Jeffrey;Marc Pidou - 通讯作者:
Marc Pidou
Recovery of ammonia from wastewater through chemical precipitation
- DOI:
10.1007/s10973-019-09108-5 - 发表时间:
2019-12-11 - 期刊:
- 影响因子:3.100
- 作者:
Lavinia Bianchi;Kerry Kirwan;Luca Alibardi;Marc Pidou;Stuart R. Coles - 通讯作者:
Stuart R. Coles
Robustness and resilience of different solid-liquid separation technologies for tertiary phosphorus removal to low levels by coagulation
通过混凝实现三级除磷至低水平的不同固液分离技术的稳健性和恢复力
- DOI:
10.1016/j.scitotenv.2025.179170 - 发表时间:
2025-04-25 - 期刊:
- 影响因子:8.000
- 作者:
Olga Murujew;Andrea Wilson;Peter Vale;Yadira Bajón-Fernández;Bruce Jefferson;Marc Pidou - 通讯作者:
Marc Pidou
The impact of polymer selection and dose on the incorporation of ballasting agents onto wastewater aggregates
- DOI:
10.1016/j.watres.2019.115346 - 发表时间:
2020-03-01 - 期刊:
- 影响因子:
- 作者:
Olga Murujew;Jordan Geoffroy;Emeline Fournie;Elisa Socionovo Gioacchini;Andrea Wilson;Peter Vale;Bruce Jefferson;Marc Pidou - 通讯作者:
Marc Pidou
Molecular mechanistic insights towards aggregation of nano-biochar moderated by aromatic components in dissolved organic matter
关于溶解有机物中芳香族成分调节纳米生物炭聚集的分子机制见解
- DOI:
10.1016/j.envint.2025.109350 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:9.700
- 作者:
Zheng Zhou;Meng Lu;Yu Huang;Changping Zhao;Yafeng Wang;Marc Pidou;Min Wu;Quan Chen;Paul Jeffrey;Bo Pan - 通讯作者:
Bo Pan
Marc Pidou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Fungi-Biopolymer synergistic application in soil stabilisation
真菌-生物聚合物在土壤稳定中的协同应用
- 批准号:
EP/Y002202/1 - 财政年份:2024
- 资助金额:
$ 12.84万 - 项目类别:
Research Grant
Development of a sustainable biopolymer for extrusion and injection moulding manufacturing
开发用于挤出和注塑制造的可持续生物聚合物
- 批准号:
10092365 - 财政年份:2024
- 资助金额:
$ 12.84万 - 项目类别:
Collaborative R&D
RUI: BIOPOLYMER - BIObricks POLYketide Metabolic EngineeRing platform for unraveling the biosynthesis of higher anthracyclines
RUI:BIOPOLYMER - BIObricks 聚酮化合物代谢工程平台,用于揭示高级蒽环类药物的生物合成
- 批准号:
2321976 - 财政年份:2024
- 资助金额:
$ 12.84万 - 项目类别:
Standard Grant
FMSG: Bio: RAMP-Bio-CAFe: Routing Advanced Manufacturing of BioPolymer(s): Capturing Agri-feedstocks in Cell free Factories
FMSG:生物:RAMP-Bio-CAFe:生物聚合物的先进制造路线:在无细胞工厂中捕获农业原料
- 批准号:
2328291 - 财政年份:2023
- 资助金额:
$ 12.84万 - 项目类别:
Standard Grant
Stabilising soil foundation with biopolymer for enhanced rail transport
用生物聚合物稳定地基以增强铁路运输
- 批准号:
DE230101127 - 财政年份:2023
- 资助金额:
$ 12.84万 - 项目类别:
Discovery Early Career Researcher Award
Unlocking the potential of biopolymer soil stabilisation
释放生物聚合物土壤稳定的潜力
- 批准号:
EP/X016943/1 - 财政年份:2023
- 资助金额:
$ 12.84万 - 项目类别:
Research Grant
I-Corps: AI for predicting polymer properties for biopolymer films
I-Corps:用于预测生物聚合物薄膜聚合物特性的人工智能
- 批准号:
2335930 - 财政年份:2023
- 资助金额:
$ 12.84万 - 项目类别:
Standard Grant
Breaking FROntiers for advanced engineering of bespoke, functional Biopolymer COmposite materials (FROBCO)
突破 FROntiers,实现定制功能性生物聚合物复合材料 (FROBCO) 的先进工程
- 批准号:
EP/V002236/3 - 财政年份:2023
- 资助金额:
$ 12.84万 - 项目类别:
Fellowship
Scanning Probe Microscopy of Polymer, Biopolymer and Semicrystalline Surface Nanostructures
聚合物、生物聚合物和半晶表面纳米结构的扫描探针显微镜
- 批准号:
RGPIN-2022-04790 - 财政年份:2022
- 资助金额:
$ 12.84万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Elucidating the Nanoscale Interaction between Invertible Micellar Assemblies (IMAs) and Biopolymer Cargos under Varied Environments
合作研究:阐明不同环境下可逆胶束组件(IMA)和生物聚合物货物之间的纳米级相互作用
- 批准号:
2217474 - 财政年份:2022
- 资助金额:
$ 12.84万 - 项目类别:
Standard Grant














{{item.name}}会员




