CatPlasKin: The microkinetics of non-thermal plasma-assisted heterogeneous catalysis with application to the non-oxidative coupling of methane
CatPlasKin:非热等离子体辅助多相催化的微动力学及其在甲烷非氧化偶联中的应用
基本信息
- 批准号:EP/R031800/1
- 负责人:
- 金额:$ 14.36万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Methane is an abundant material that presents huge potential as a feedstock for chemicals synthesis. It is widely available as the major constituent of natural gas, but becomes also increasingly more obtainable from sustainable sources, such as biogas and landfill gas, and unconventional sources, such as shale gas, coalbed methane and methane hydrates. Moreover, it has more than 25 times higher 100-year global warming potential to that of CO2, so the need to develop efficient methane utilization methods towards value-added products is more than clear.Among many uses, methane has been identified as a very promising raw material for the production of ethylene. The latter is the most widely produced base chemical, used e.g. for polymers, but its production depends on crude oil, generating the vast majority of CO2 process emissions in the UK chemical industry. In fact, under the Kyoto Protocol and the UK Climate Change Act, UK has specific international and domestic targets for reducing greenhouse gas emissions. 11% of these are represented by methane originating from agriculture, waste management and the energy industry, hence the production of ethylene from methane can be a promising process with multiple benefits for these sectors.The high temperatures needed, though, for the activation of the stable methane molecule via thermal-catalysis, in conjunction with the use of oxidants to facilitate thermodynamically favourable routes, result in significant amounts of undesired carbon oxide by-products in the currently applied upgrading methods.The combination of non-thermal plasma with catalysis has recently emerged as a promising technology to enable catalysts to operate at low temperatures. In non-thermal plasmas, the overall gas temperature is as low as ambient, however electrons are highly energetic resulting in collisions that easily break down molecule bonds, producing various reactive species like free radicals, excited states and ions that participate in subsequent reactions. The strong non-equilibrium character of these plasmas has been shown to even allow thermodynamically unfavourable reactions to occur under ambient conditions.Being able to carry out direct methane coupling towards ethylene at low temperatures at non-oxidative conditions would present significant benefits, ranging from carbon oxides-free products to drastically reduced energy requirements and would enable alternate production routes towards polymers and high octane-number fuels. Combining the high reactivity of plasma with the high selectivity of the catalytic surface has a huge potential to unravel these benefits, which can further be enhanced by the use of sustainable electricity for the generation of the plasma.Nonetheless, the interaction between non-thermal plasma and catalysts is a highly complex phenomenon. There has been a considerable amount of experimental work aimed at understanding the underlying elementary processes, however most mechanistic details are not yet elucidated. The combination of experimental, theoretical and modelling studies is needed to gain a more fundamental insight.Microkinetic modelling is proposed as a novel approach to enhance the understanding and enable the optimisation of plasma-assisted heterogeneous catalytic reaction systems. With support from BASF, UK and a carefully designed experimental program, the novelty of the proposed project lies on the, for the first time, systematic consideration of all elementary reaction processes taking place in the plasma phase and on the catalyst surface and the explicit description of the interactions among them. The project is very timely, addressing topics in EPSRC's portfolio in relation to energy efficiency and alternative fuels and sources of chemicals. Successful implementation will result in the development of predictive computational tools that can be used to accelerate the design of new processes, reducing the needs for experimentation and associated costs.
甲烷是一种资源丰富的原料,作为化学品合成的原料具有巨大的潜力。它作为天然气的主要成分广泛可用,但也越来越多地从可持续来源获得,如沼气和垃圾填埋气,以及非常规来源,如页岩气、煤层气和甲烷水合物。此外,它的100年全球变暖潜力是二氧化碳的25倍以上,因此向附加值产品开发高效的甲烷利用方法的必要性非常明显。在许多用途中,甲烷已被确定为生产乙烯的一种非常有前途的原料。后者是生产范围最广的基础化学品,例如用于聚合物,但其生产依赖于原油,在英国化学工业中产生了绝大多数二氧化碳工艺排放。事实上,根据《京都议定书》和《英国气候变化法》,英国有具体的国际和国内温室气体减排目标。其中11%是来自农业、废物管理和能源工业的甲烷,因此甲烷制乙烯可能是一个很有前途的过程,对这些部门有多种好处。然而,通过热催化激活稳定的甲烷分子所需的高温,加上使用氧化剂来促进热力学上的有利路线,导致在目前应用的升级方法中产生大量不受欢迎的一氧化碳副产物。低温等离子体与催化相结合最近成为一种有希望的技术,使催化剂能够在低温下运行。在非热等离子体中,气体的整体温度与周围环境一样低,然而电子的能量很高,导致碰撞很容易打破分子键,产生各种活性物种,如参与后续反应的自由基、激发态和离子。这些等离子体的强非平衡特性已被证明甚至允许在环境条件下发生热力学上不利的反应。如果能够在非氧化条件下在低温下进行甲烷直接偶联生成乙烯,将带来显著的好处,从无碳氧化物产品到能源需求大幅减少,并将使生产聚合物和高辛烷值燃料的替代路线成为可能。将等离子体的高反应性和催化剂表面的高选择性结合起来,具有巨大的潜力来消除这些好处,使用可持续的电能来产生等离子体可以进一步增强这些好处。然而,低温等离子体和催化剂之间的相互作用是一个高度复杂的现象。已经有相当多的实验工作旨在了解潜在的基本过程,然而大多数机械细节尚未阐明。需要将实验、理论和模型研究相结合,以获得更基本的见解。微观动力学模型被提出作为一种新的方法来加深对等离子体辅助多相催化反应体系的理解和优化。在英国巴斯夫的支持和精心设计的实验计划的支持下,该项目的创新之处在于首次系统地考虑了在等离子体相和催化剂表面发生的所有基本反应过程,并明确描述了它们之间的相互作用。该项目非常及时,涉及EPSRC投资组合中与能源效率、替代燃料和化学品来源有关的主题。成功的实施将导致预测计算工具的开发,这些工具可用于加快新流程的设计,减少对实验的需求和相关成本。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating the effects of helium, argon and hydrogen co-feeding on the non-oxidative coupling of methane in a dielectric barrier discharge reactor
- DOI:10.1016/j.ces.2022.117731
- 发表时间:2022-05
- 期刊:
- 影响因子:4.7
- 作者:P. Maitre;J. Long;M. Bieniek;M. N. Bannerman;P. Kechagiopoulos
- 通讯作者:P. Maitre;J. Long;M. Bieniek;M. N. Bannerman;P. Kechagiopoulos
Plasma-enhanced catalysis for the upgrading of methane: a review of modelling and simulation methods
- DOI:10.1039/d0re00024h
- 发表时间:2020-05
- 期刊:
- 影响因子:3.9
- 作者:P. Maitre;M. Bieniek;P. Kechagiopoulos
- 通讯作者:P. Maitre;M. Bieniek;P. Kechagiopoulos
Plasma-Catalysis of Nonoxidative Methane Coupling: A Dynamic Investigation of Plasma and Surface Microkinetics over Ni(111).
- DOI:10.1021/acs.jpcc.2c03503
- 发表时间:2022-12-01
- 期刊:
- 影响因子:3.7
- 作者:Maitre, Pierre-Andre;Bieniek, Matthew S.;Kechagiopoulos, Panagiotis N.
- 通讯作者:Kechagiopoulos, Panagiotis N.
Modelling excited species and their role on kinetic pathways in the non-oxidative coupling of methane by dielectric barrier discharge
- DOI:10.1016/j.ces.2020.116399
- 发表时间:2021-04
- 期刊:
- 影响因子:4.7
- 作者:P. Maitre;M. Bieniek;P. Kechagiopoulos
- 通讯作者:P. Maitre;M. Bieniek;P. Kechagiopoulos
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panagiotis Kechagiopoulos其他文献
Panagiotis Kechagiopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}