Property-Enhanced Porphyrins

性能增强的卟啉

基本信息

  • 批准号:
    EP/R045305/1
  • 负责人:
  • 金额:
    $ 48.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

In natural photosynthesis, the sun light is directly collected and conveyed to a pair of precisely organised porphyrins, the special pair, which undergoes charge separation. The liberated electron is then translated into chemical energy that is used to develop the living organism. In brief, photosynthesis consumes carbon dioxide and water to produce energy-rich molecules and delivers Oxygen as a by-product. While the efficiency of natural photosynthesis is questionable, its molecular building blocks are self-assembled, made from common non-toxic elements and its waste and by-products are environmentally favourable. In relation to our most pressing environmental challenges and ever-increasing energy consumption, photosynthesis thus represents the perfect solution.However, the complexity of the molecular architecture involved in photosynthesis renders it difficult to reproduce artificially. Nevertheless, it is possible to mimic specific aspects of photosynthesis and researchers have concentrated their efforts in the development of carbon capture, bio-fuel production, water splitting and photovoltaic solar cells. Each of these approaches to artificial photosynthesis includes an antenna system to harvest the sun light. Alike in natural photosynthesis, the role of the antenna in these artificial systems can be played by a porphyrin.Within femto- to picoseconds after absorbing the incoming sun light energy, the porphyrin undergoes specific mechanisms. Of particular interest to this project, we will investigate the following mechanisms: internal conversion, inter-system crossing and direct charge separation. Each of these relaxation pathways dictates the overall device's conversion efficiency. It is therefore crucial to understand the factors that can enhance these specific pathways to develop more efficient devices. We propose use the latest laser technology to investigate these mechanisms that are ultrafast by nature. More precisely, we will systematically study the effect of atom substitution, ring bending, and ring expansion in series of unique single-porphyrins that differs from one-another by a single constituent. Similarly, to investigate the effect of host electronegativity, we will investigate porphyrin-embedded complexes (called cytochromes) that differs from one another by the nature of their ligand, and thus electrostatic environment. The outcome of this project is to generate a list of physical characteristics that enhance either internal conversion, inter-system crossing or charge separation. With such list in hand we would then be able to design improved porphyrins for specific applications.
在自然光合作用中,太阳光被直接收集并传送到一对精确组织的卟啉,这对特殊的卟啉经历电荷分离。释放出的电子然后被转化为用于发育生物体的化学能。简而言之,光合作用消耗二氧化碳和水来产生富含能量的分子,并提供氧气作为副产品。虽然自然光合作用的效率值得怀疑,但其分子构件是自组装的,由常见的无毒元素制成,其废物和副产品对环境有利。因此,光合作用是解决我们面临的最紧迫的环境挑战和不断增加的能源消耗的完美解决方案。然而,光合作用所涉及的分子结构的复杂性使其难以人工繁殖。然而,模拟光合作用的特定方面是可能的,研究人员集中精力开发碳捕获,生物燃料生产,水分解和光伏太阳能电池。这些人工光合作用的方法中的每一种都包括一个天线系统来收集太阳光。与自然光合作用一样,在这些人工系统中,卟啉可以扮演天线的角色。在吸收入射太阳光能量后的飞秒至皮秒内,卟啉会经历特定的机制。本项目特别感兴趣的是,我们将研究以下机制:内部转换,系统间交叉和直接电荷分离。这些弛豫路径中的每一个都决定了整个器件的转换效率。因此,了解可以增强这些特定途径的因素以开发更有效的设备至关重要。我们建议使用最新的激光技术来研究这些本质上超快的机制。更准确地说,我们将系统地研究原子取代,环弯曲,和环膨胀在一系列独特的单卟啉,彼此不同的一个单一的组成。同样,为了研究宿主电负性的影响,我们将研究卟啉嵌入的复合物(称为细胞色素),它们的配体性质不同,因此静电环境也不同。该项目的结果是生成一个物理特性列表,这些物理特性可以增强内部转换、系统间交叉或电荷分离。有了这样的清单在手,我们将能够设计改进的卟啉的具体应用。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Clearing an ESKAPE Pathogen in a Model Organism; A Polypyridyl Ruthenium(II) Complex Theranostic that Treats a Resistant Acinetobacter baumannii Infection in Galleria mellonella
清除模型生物中的 ESKAPE 病原体;
From Chemotherapy to Phototherapy - Changing the Therapeutic Action of a Metallo-Intercalating RuII -ReI Luminescent System by Switching its Sub-Cellular Location.
从化疗到光疗 - 通过改变金属嵌入 RuII -Rel 发光系统的亚细胞位置来改变其治疗作用。
Ultrafast Transient Absorption Spectroscopy of Inkjet-Printed Graphene and Aerosol Gel Graphene Films: Effect of Oxygen and Morphology on Carrier Relaxation Dynamics
  • DOI:
    10.1021/acs.jpcc.2c01086
  • 发表时间:
    2022-05-12
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Auty, Alexander J.;Mansouriboroujeni, Negar;Chauvet, Adrien A. P.
  • 通讯作者:
    Chauvet, Adrien A. P.
Fourier Transforms - Century of Digitalization and Increasing Expectations
傅里叶变换 - 数字化的世纪和不断增长的期望
  • DOI:
    10.5772/intechopen.84897
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.P. Chauvet A
  • 通讯作者:
    A.P. Chauvet A
Photophysical Exploration of Two Isomers of Octaethyltrioxopyrrocorphin
  • DOI:
    10.1021/acs.jpca.3c03184
  • 发表时间:
    2023-09-10
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Bhattacharya,Sayantan;Nevonen,Dustin E.;Nemykin,Victor N.
  • 通讯作者:
    Nemykin,Victor N.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Adrien Chauvet其他文献

Type I reaction center from the green sulfur bacterium <em>Chlorobium tepidum</em>: is Chl <em>a</em> a primary electron acceptor?
  • DOI:
    10.1016/j.bpj.2008.12.2717
  • 发表时间:
    2009-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Adrien Chauvet;Bharat Jagannathan;John H. Golbeck;Sergei Savikhin
  • 通讯作者:
    Sergei Savikhin

Adrien Chauvet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Adrien Chauvet', 18)}}的其他基金

Optical Projection Tomography for Plant Imaging
用于植物成像的光学投影断层扫描
  • 批准号:
    BB/X005097/1
  • 财政年份:
    2022
  • 资助金额:
    $ 48.33万
  • 项目类别:
    Research Grant
SitS NSF-UKRI: Real-time and Continuous Monitoring of Phosphates in the Soil with Graphene-Based Printed Sensor Arrays
SitS NSF-UKRI:使用基于石墨烯的印刷传感器阵列实时连续监测土壤中的磷酸盐
  • 批准号:
    NE/T010924/1
  • 财政年份:
    2020
  • 资助金额:
    $ 48.33万
  • 项目类别:
    Research Grant

相似海外基金

SBIR Phase I: High-Efficiency Liquid Desiccant Regenerator for Desiccant Enhanced Evaporative Air Conditioning
SBIR 第一阶段:用于干燥剂增强蒸发空调的高效液体干燥剂再生器
  • 批准号:
    2335500
  • 财政年份:
    2024
  • 资助金额:
    $ 48.33万
  • 项目类别:
    Standard Grant
Enhanced Drug Repositioningを用いた肝硬変合併症に対する同時制御治療法の開発
使用增强药物重新定位开发肝硬化并发症同步控制疗法
  • 批准号:
    24K11137
  • 财政年份:
    2024
  • 资助金额:
    $ 48.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
  • 批准号:
    2405662
  • 财政年份:
    2024
  • 资助金额:
    $ 48.33万
  • 项目类别:
    Standard Grant
STTR Phase I: Microwave-Enhanced Modular Ammonia Synthesis
STTR 第一阶段:微波增强模块化氨合成
  • 批准号:
    2335104
  • 财政年份:
    2024
  • 资助金额:
    $ 48.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Data-driven engineering of the yeast Kluyveromyces marxianus for enhanced protein secretion
合作研究:马克斯克鲁维酵母的数据驱动工程,以增强蛋白质分泌
  • 批准号:
    2323984
  • 财政年份:
    2024
  • 资助金额:
    $ 48.33万
  • 项目类别:
    Standard Grant
Digitally Assisted Power Amplifier Design with Enhanced Energy Efficiency
具有增强能效的数字辅助功率放大器设计
  • 批准号:
    LP220200906
  • 财政年份:
    2024
  • 资助金额:
    $ 48.33万
  • 项目类别:
    Linkage Projects
Revolutionary Soft Surfboards - Advanced UK low carbon manufacturing for enhanced durability and 100% recyclability
革命性%20Soft%20冲浪板%20-%20Advanced%20UK%20low%20carbon%20制造%20for%20增强%20耐用性%20和%20100%%20可回收性
  • 批准号:
    10095272
  • 财政年份:
    2024
  • 资助金额:
    $ 48.33万
  • 项目类别:
    Collaborative R&D
ENTICE: Enhanced Ammonia Cracking to Improve Engine Combustion and Emissions
ENTICE:增强氨裂解以改善发动机燃烧和排放
  • 批准号:
    10096979
  • 财政年份:
    2024
  • 资助金额:
    $ 48.33万
  • 项目类别:
    Collaborative R&D
AI4PEX: Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
AI4PEX:人工智能和机器学习,用于增强地球系统模型中过程和极值的表示
  • 批准号:
    10103109
  • 财政年份:
    2024
  • 资助金额:
    $ 48.33万
  • 项目类别:
    EU-Funded
SENSORBEES: Sensorbees are ENhanced Self-ORganizing Bio-hybrids for Ecological and Environmental Surveillance
传感器蜂:传感器蜂是用于生态和环境监测的增强型自组织生物杂交体
  • 批准号:
    10109956
  • 财政年份:
    2024
  • 资助金额:
    $ 48.33万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了