New Developments in Quantitative 3D Chemical Imaging

定量 3D 化学成像的新进展

基本信息

  • 批准号:
    EP/S019863/1
  • 负责人:
  • 金额:
    $ 107.65万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Time-of-flight secondary ion mass spectrometry (ToF-SIMS) is an outstanding method of chemical analysis, used extensively in academia and industry to characterise complex samples in 2D/3D. Application areas include materials science, biology, healthcare, energy etc. In the analysis the high-energy 'primary' ion projectile impact on a sample surface, causes ejection of 'secondary' molecular ions which are analysed by a mass spectrometer to provide chemically-rich material characterisation. Scanning the primary beam across the sample provides 2D surface imaging (>100 nm lateral resolution) and by sequentially collecting images while the sample is eroded, 3D sub-surface imaging (>3 nm depth resolution). This unique combination of analytical capabilities means ToF-SIMS is unmatched in its potential to determine, in a single analysis, the composition and detailed distribution of multiple, chemicals in complex samples. Importantly, this technology supports 'discovery mode' research, where the analysis is not biased towards pre-selected, labelled compounds, and therefore leads to hypothesis generation. The analysis is highly-multiplexed and comprehensive - hundreds of species can be potentially detected in a single measurement, limited only by the sensitivity of the process, which here we seek to enhance 100-fold.This proposal addresses critical challenges from next-generation samples demanding greater sensitivity, broader chemical coverage and reliable quantification to address issues including sub-cellular drug localisation and nanoscale molecular materials. It builds on our internationally-leading reputation for innovative ToF-SIMS instrumentation. The characteristics of the primary ion are fundamental in determining impact dynamics at the sample surface and the success of the resulting measurement. The challenge of producing intact secondary molecules from the sample has been largely solved using polyatomic cluster projectiles e.g. C60 and Ar2000 which produce ~100 sputtered molecules per impact. However, only ~0.001-0.1% of these molecules are produced as charged ions, which is necessary for their detection. Clearly there is huge room for improvement in the ionisation efficiency. The principle of projectile-initiated chemical reactions promoting ionisation of sputtered species has recently been firmly established by our work and that of others. We must now build on this knowledge and develop complementary approaches to meet the ionisation challenge and deliver quantitative compositional information.We have assembled a multidisciplinary team of international experts from academia and industry, which is uniquely positioned to pursue this important project. Building on >20 years' experience in innovation of SIMS instrumentation, enabled through EPSRC support and close collaboration with UK Industry, we will develop next-generation reactive ion beams and analytical methodology. This will deliver further transformative gains in performance which are critical to meet future application needs. Our novel results will be framed within the context of emerging theory to understand mechanisms of enhanced ionisation and to underpin the optimisation of projectile parameters. They will stimulate further development of theoretical models of the physical processes underlying SIMS and related techniques.The project is highly-adventurous, providing beyond state-of-the-art analytical capability underpinned with new fundamental understanding. We are ideally placed to exploit this through the interdisciplinary research collaborations at the Manchester Institute of Biotechnology and the Sir Henry Royce Institute for Advanced Materials. The vastly increased quality of data will result in new understanding in a wide range of applications spanning many areas of science and technology.
飞行时间二次离子质谱(ToF-SIMS)是一种杰出的化学分析方法,广泛应用于学术界和工业界,以二维/三维的方式对复杂样品进行分析。应用领域包括材料科学、生物学、医疗保健、能源等。在分析中,高能“初级”离子射弹撞击样品表面,导致“次级”分子离子喷射,这些分子离子由质谱仪分析,以提供化学丰富的材料表征。在样品上扫描初级光束提供2D表面成像(>100 nm横向分辨率),并且通过在样品被侵蚀时顺序地收集图像,提供3D亚表面成像(>3 nm深度分辨率)。这种独特的分析能力组合意味着ToF-SIMS在单次分析中确定复杂样品中多种化学物质的组成和详细分布方面具有无与伦比的潜力。重要的是,这项技术支持“发现模式”研究,其中分析不偏向于预先选择的标记化合物,因此导致假设生成。该分析是高度多路复用和全面的-数百种物质可以在一次测量中潜在地被检测到,仅受过程灵敏度的限制,在这里我们寻求提高100倍。该提案解决了下一代样品的关键挑战,这些样品要求更高的灵敏度,更广泛的化学覆盖范围和可靠的定量,以解决包括亚细胞药物定位和纳米级分子材料在内的问题。它建立在我们在创新ToF-SIMS仪器方面的国际领先声誉之上。一次离子的特性是确定样品表面的冲击动力学和测量成功的基础。从样品中产生完整的二次分子的挑战已经在很大程度上解决了使用多原子团簇射弹,例如C60和Ar 2000,每次撞击产生约100个溅射分子。然而,这些分子中只有约0.001-0.1%是以带电离子的形式产生的,这是检测它们所必需的。显然,在电离效率方面存在巨大的改进空间。射弹引发的化学反应促进溅射物种的电离的原则,最近已经牢固地建立了我们的工作和他人。现在,我们必须在此基础上开发互补方法,以应对电离挑战并提供定量成分信息。我们组建了一支由来自学术界和工业界的国际专家组成的多学科团队,这是开展这一重要项目的独特优势。基于超过20年的西姆斯仪器创新经验,通过EPSRC的支持和与英国工业界的密切合作,我们将开发下一代反应离子束和分析方法。这将带来进一步的性能变革,这对于满足未来的应用需求至关重要。我们的新结果将框架内的新兴理论的背景下,了解增强电离的机制,并支持抛射体参数的优化。他们将促进西姆斯和相关技术基础物理过程的理论模型的进一步发展。该项目是高度冒险的,提供超越最先进的分析能力,以新的基本理解为基础。我们非常适合通过曼彻斯特生物技术研究所和亨利罗伊斯爵士先进材料研究所的跨学科研究合作来利用这一点。数据质量的大幅提高将导致对跨越许多科学和技术领域的广泛应用的新理解。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Secondary ion mass spectrometry analysis of metal oxides using 70 keV argon, carbon dioxide, and water gas cluster ion beams
使用 70 keV 氩气、二氧化碳和水煤气簇离子束对金属氧化物进行二次离子质谱分析
Quantitative and Qualitative Analyses of Mass Spectra of OEL Materials by Artificial Neural Network and Interface Evaluation: Results from a VAMAS Interlaboratory Study.
通过人工神经网络和界面评估对 OEL 材料的质谱进行定量和定性分析:VAMAS 实验室间研究的结果。
  • DOI:
    10.1021/acs.analchem.3c03173
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Aoyagi S
  • 通讯作者:
    Aoyagi S
Sensitivity enhancement using chemically reactive gas cluster ion beams in secondary ion mass spectrometry (SIMS)
在二次离子质谱 (SIMS) 中使用化学反应气体团簇离子束增强灵敏度
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicholas Lockyer其他文献

Investigation of molecular weight effects of polystyrene in ToF-SIMS using C<sub>60</sub><sup>+</sup> and Au<sup>+</sup> primary ion beams
  • DOI:
    10.1016/j.apsusc.2008.05.177
  • 发表时间:
    2008-12-15
  • 期刊:
  • 影响因子:
  • 作者:
    Alan M. Piwowar;Nicholas Lockyer;John C. Vickerman
  • 通讯作者:
    John C. Vickerman

Nicholas Lockyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nicholas Lockyer', 18)}}的其他基金

Matrix-assisted laser desorption/ionization mass spectrometry imaging for advanced chemical and materials analysis
用于先进化学和材料分析的基质辅助激光解吸/电离质谱成像
  • 批准号:
    EP/T031301/1
  • 财政年份:
    2020
  • 资助金额:
    $ 107.65万
  • 项目类别:
    Research Grant
Development of Multiplexed ToF-SIMS Instrumentation
多路 ToF-SIMS 仪器的开发
  • 批准号:
    EP/N028945/1
  • 财政年份:
    2016
  • 资助金额:
    $ 107.65万
  • 项目类别:
    Research Grant
Quantitative Nanoscale Imaging of Trace Elements in Biological Systems
生物系统中微量元素的定量纳米成像
  • 批准号:
    BB/I023771/1
  • 财政年份:
    2012
  • 资助金额:
    $ 107.65万
  • 项目类别:
    Research Grant

相似海外基金

Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
  • 批准号:
    10064693
  • 财政年份:
    2024
  • 资助金额:
    $ 107.65万
  • 项目类别:
    Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
  • 批准号:
    23H01264
  • 财政年份:
    2023
  • 资助金额:
    $ 107.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
  • 批准号:
    23H01944
  • 财政年份:
    2023
  • 资助金额:
    $ 107.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 107.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
  • 批准号:
    23K03064
  • 财政年份:
    2023
  • 资助金额:
    $ 107.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 107.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
  • 批准号:
    23K03266
  • 财政年份:
    2023
  • 资助金额:
    $ 107.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments in quasi-Monte Carlo methods through applications of mathematical statistics
数理统计应用准蒙特卡罗方法的新发展
  • 批准号:
    23K03210
  • 财政年份:
    2023
  • 资助金额:
    $ 107.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of game theory played on networks with incomplete information and their applications to public policies
不完全信息网络博弈论的发展及其在公共政策中的应用
  • 批准号:
    23K01343
  • 财政年份:
    2023
  • 资助金额:
    $ 107.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
  • 批准号:
    23K12950
  • 财政年份:
    2023
  • 资助金额:
    $ 107.65万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了