Coherent Many-Body Quantum States of Matter
相干多体量子物质态
基本信息
- 批准号:EP/S020527/1
- 负责人:
- 金额:$ 194.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In our everyday life we rarely think about the effects of quantum mechanics --- and yet they are constantly around us, determining the properties of every material object in our world. The laws of quantum physics define every property of matter, from the behaviour of individual atoms, to how the atoms bind together to form materials, to the characteristics of these resultant materials. Our understanding of this chain of influence is one of the greatest triumphs of modern science. It is only through this understanding that scientists have engineered modern technologies and devices such as computers, mobile phones, and fibre-optic communications. In the field of quantum condensed matter, we are concerned with materials, and the quantum mechanics of matter, at a very microscopic scale. Our aim is to uncover new principles, predict new behaviours, new types of matter, and enable new applications. A key concept that we focus on is the idea of quantum mechanical coherence in matter. The word "coherence" here implies that many microscopic objects are acting together in concert. Such behaviour, when it occurs, allows for the effects of quantum physics to be greatly enhanced. A prime example of coherent behaviour occurs in a superconductor, where due to the effects of quantum mechanics, electrons can flow forever with zero resistance and zero energy loss. In the last decades it has become clear in our community that quantum-mechanical coherence in materials is much more common than we previously expected, although its effects are often subtle and well hidden from our view. Understanding coherent effects in systems made of many particles (i.e., in material substances) is the main aim of the research supported by this grant. We use a combination of modern mathematical and computational tools to investigate the puzzles of our field. The physics we study is highly complex because in such systems, the many constituent particles interact strongly with each other. As a consequence, qualitatively different behaviour emerges. Because of the novelty of these effects, this field of study is both challenging and exciting, attracting some of the best and the brightest young scientists. We have divided our effort into three main themes: Understanding Quantum Many-Body Dynamics: the investigation of how quantum mechanics effects the time evolution of material systems on a microscopic scale. We aim to determine new principles for how coherence is created, spreads, and is destroyed, and how this affects the properties of the substance. Exploring Quantum Behaviour Far From the Ground State: for over a century it was believed that if heat energy is put into a physical system at one point, it will inevitably spread out to other regions. In the last few years, however, it has become clear that due to the effects of quantum coherence in interacting disordered systems, added energy may remain localized in one region in a stable fashion. We aim to understand better the properties of systems that present such stable and/or coherent high energy states. Identifying Topological Platforms for Quantum Coherent Phenomena: topological matter exhibits subtle long-range patterns of coherence that cannot be understood by local descriptions. Because of these global effects, such materials are believed to be particularly well suited for robust quantum computing applications. The study of these substances therefore has attracted researchers from physics, mathematics, and computer science. We will explore these materials, where they exist in nature, how they might be engineered, and what their applications are. While our research is mainly academic in nature, we hope that, analogous to discoveries in basic semiconductor physics a century ago, our discoveries may enable technological revolutions of the future.
在我们的日常生活中,我们很少考虑量子力学的影响,但它们却一直围绕在我们身边,决定着我们世界上每一个物质物体的性质。量子物理定律定义了物质的每一个属性,从单个原子的行为,到原子如何结合在一起形成材料,再到这些合成材料的特征。我们对这种影响链的理解是现代科学最伟大的胜利之一。正是通过这种理解,科学家们设计出了现代技术和设备,如计算机、移动电话和光纤通信。在量子凝聚态物质领域,我们关注的是材料,以及物质的量子力学,在非常微观的尺度上。我们的目标是发现新的原理,预测新的行为,新的物质类型,并实现新的应用。我们关注的一个关键概念是物质的量子力学相干性。这里的“相干性”一词意味着许多微观物体协同作用。当这种行为发生时,量子物理的效应就会大大增强。相干行为的一个主要例子发生在超导体中,由于量子力学的影响,电子可以以零电阻和零能量损失永远流动。在过去的几十年里,我们已经清楚地认识到,材料中的量子力学相干性比我们之前预期的要普遍得多,尽管它的影响往往是微妙的,并且很好地隐藏在我们的视野之外。了解由许多粒子(即物质)组成的系统中的相干效应是这项资助研究的主要目的。我们结合使用现代数学和计算工具来研究我们领域的难题。我们研究的物理学是非常复杂的,因为在这样的系统中,许多组成粒子彼此之间有强烈的相互作用。结果,出现了本质上不同的行为。由于这些效应的新颖性,这一研究领域既具有挑战性又令人兴奋,吸引了一些最优秀、最聪明的年轻科学家。我们将我们的努力分为三个主要主题:理解量子多体动力学:研究量子力学如何影响微观尺度上物质系统的时间演化。我们的目标是确定相干性如何产生、传播和破坏的新原则,以及这如何影响物质的性质。探索远离基态的量子行为:一个多世纪以来,人们一直认为,如果在一个物理系统的某一点输入热能,它将不可避免地扩散到其他区域。然而,在过去的几年里,由于相互作用的无序系统中的量子相干性的影响,增加的能量可能以稳定的方式保持在一个区域。我们的目标是更好地理解呈现这种稳定和/或相干高能态的系统的性质。确定量子相干现象的拓扑平台:拓扑物质表现出微妙的远程相干模式,无法通过局部描述来理解。由于这些全球效应,这些材料被认为特别适合于强大的量子计算应用。因此,对这些物质的研究吸引了来自物理学、数学和计算机科学的研究人员。我们将探索这些材料,它们在自然界中存在的地方,它们如何被设计,以及它们的应用是什么。虽然我们的研究本质上主要是学术性的,但我们希望,就像一个世纪前在基础半导体物理学上的发现一样,我们的发现可能会推动未来的技术革命。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Landau levels, Bardeen polynomials, and Fermi arcs in Weyl semimetals: Lattice-based approach to the chiral anomaly
- DOI:10.1103/physrevb.99.140201
- 发表时间:2018-07
- 期刊:
- 影响因子:3.7
- 作者:Jan Behrends;S. Roy;M. Kolodrubetz;J. Bardarson;A. Grushin
- 通讯作者:Jan Behrends;S. Roy;M. Kolodrubetz;J. Bardarson;A. Grushin
Dynamics of fluctuations in quantum simple exclusion processes
- DOI:10.21468/scipostphys.12.1.042
- 发表时间:2021-07
- 期刊:
- 影响因子:5.5
- 作者:D. Bernard;F. Essler;Ludwig Hruza;M. Medenjak
- 通讯作者:D. Bernard;F. Essler;Ludwig Hruza;M. Medenjak
Distinguishing localization from chaos: Challenges in finite-size systems
- DOI:10.1016/j.aop.2021.168415
- 发表时间:2021-02-22
- 期刊:
- 影响因子:3
- 作者:Abanin, D. A.;Bardarson, J. H.;Vasseur, R.
- 通讯作者:Vasseur, R.
Entanglement Negativity and Mutual Information after a Quantum Quench: Exact Link from Space-Time Duality.
量子淬灭后的纠缠负性和互信息:时空对偶的精确联系。
- DOI:10.1103/physrevlett.129.140503
- 发表时间:2022
- 期刊:
- 影响因子:8.6
- 作者:Bertini B
- 通讯作者:Bertini B
Topological Defects on the Lattice: Dualities and Degeneracies
晶格上的拓扑缺陷:对偶性和简并性
- DOI:10.48550/arxiv.2008.08598
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Aasen D
- 通讯作者:Aasen D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J Chalker其他文献
J Chalker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J Chalker', 18)}}的其他基金
Quantum Matter in and out of Equilibrium
平衡态和非平衡态的量子物质
- 批准号:
EP/N01930X/1 - 财政年份:2016
- 资助金额:
$ 194.73万 - 项目类别:
Research Grant
Oxford Quantum Condensed Matter Theory Grant
牛津量子凝聚态理论补助金
- 批准号:
EP/I032487/1 - 财政年份:2011
- 资助金额:
$ 194.73万 - 项目类别:
Research Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
- 批准号:
2337987 - 财政年份:2024
- 资助金额:
$ 194.73万 - 项目类别:
Continuing Grant
CAREER: Many-Body Green's Function Framework for Materials Spectroscopy
职业:材料光谱的多体格林函数框架
- 批准号:
2337991 - 财政年份:2024
- 资助金额:
$ 194.73万 - 项目类别:
Standard Grant
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
$ 194.73万 - 项目类别:
Continuing Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
- 批准号:
2300172 - 财政年份:2024
- 资助金额:
$ 194.73万 - 项目类别:
Continuing Grant
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
- 批准号:
EP/Y036069/1 - 财政年份:2024
- 资助金额:
$ 194.73万 - 项目类别:
Research Grant
Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
- 批准号:
EP/X042812/1 - 财政年份:2024
- 资助金额:
$ 194.73万 - 项目类别:
Fellowship
CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
- 批准号:
2337931 - 财政年份:2024
- 资助金额:
$ 194.73万 - 项目类别:
Continuing Grant
Geometric approaches to quantum many body problems
量子多体问题的几何方法
- 批准号:
DE230100829 - 财政年份:2023
- 资助金额:
$ 194.73万 - 项目类别:
Discovery Early Career Researcher Award
INTERACTIVE DYNAMICS OF MANY-BODY QUANTUM SYSTEMS
多体量子系统的交互动力学
- 批准号:
EP/X030881/1 - 财政年份:2023
- 资助金额:
$ 194.73万 - 项目类别:
Research Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
- 批准号:
2310283 - 财政年份:2023
- 资助金额:
$ 194.73万 - 项目类别:
Continuing Grant














{{item.name}}会员




