Energy Harvesting Triboelectric Nano-Generators for the Internet-of-Things
用于物联网的能量收集摩擦纳米发电机
基本信息
- 批准号:EP/S02106X/1
- 负责人:
- 金额:$ 80.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Next generation technologies, such as the IoT and 5G technology, are shaping to enhance the standard of life of people by creating a digitally connected world, in which the productivity, health, and communication will be vastly improved. This involves integrating sensors, intelligent circuits and miniature electronic devices into day to day objects around us, including the human body, clothing, buildings, vehicles and streets etc. Such systems become increasingly feasible due to the advancements in low-power electronics and IoT technologies, however, powering these electronics with the required complexity, flexibility, mobility and self-powered capabilities remains one of the key challenges in the modern era. Scavenging power from freely available ambient mechanical energy sources, such as human motion, wind, wave energy and machine vibrations, has been proven to be a viable approach to fulfil such energy and performance requirements.The triboelectric Nanogenerator (TENG) is one of the leading candidates to emerge as a potential energy source for powering autonomous IoT applications. These devices have shown the capability of capturing waste mechanical energy from ambient sources and easily producing a few Watts of output power, with high conversion efficiencies reported. However, knowledge of the electromagnetic behaviour of TENGs and the exact way they operate has been lacking in the past. Consequently, the relationship between the structural, material and motion parameters with the output power has not been adequately studied. This has resulted in non-optimised TENG architectures which suffer from relatively low, instantaneous and irregular output power, along with an impedance mismatch between the TENG and the output applications. Such issues decrease the output power of the TENG and significantly reduce its efficiency. This in turn associates with numerous other issues such as elevated cost, higher carbon footprint, larger device size and unreliable power supply.Recently, we introduced the distance-dependent electric field (DDEF) model, the first analytical theoretical model to fully describe the working principles of TENGs, using Maxwell's equations. This model has been proven to accurately predict the output behaviour of different TENG working modes and has been successfully applied to develop optimisation strategies for simple planar TENGs, significantly reducing most issues described above.In the proposed project, we will use the DDEF model to optimise material, device and motion parameters of TENGs to develop autonomous energy harvesters for IoT applications such as health sensors, wireless communication networks, portable and wearable electronics. We will first assess the energy requirements of IoT devices and design TENGs with suitable efficiencies to capture that energy from ambient sources. These devices are then finetuned to obtain the ideal size, shape, and material type, which will fit the applications while providing optimum electric field distribution, resulting in increased power outputs. We will use commonly available, low cost and flexible triboelectric polymers (eg: nylon, PET) as TENG layers, and further use scalable low-cost manufacturing techniques. Nanotechnology based surface improvements will be conducted to further improve the efficiency of these devices. The suggested improvements will increase the output power by about 100% compared to a non-optimised device, as evident from our simulation and calculation results. To ensure a non-interrupted regular power supply, we will integrate many TENG units with calculated phase differences, which would result in a near DC output current. Finally, we will combine the power management circuits and energy storage units (eg: supercapacitors and flexible batteries) along with the TENG to the IoT module, to assemble the fully integrated self-powered IoT devices.
下一代技术,如物联网和5G技术,正在通过创造一个数字连接的世界来提高人们的生活水平,在这个世界中,生产力、健康和通信将得到极大的改善。这包括将传感器、智能电路和微型电子设备集成到我们周围的日常物体中,包括人体、衣服、建筑、车辆和街道等。由于低功耗电子产品和物联网技术的进步,此类系统变得越来越可行,然而,为这些电子产品提供所需的复杂性、灵活性、移动性和自供电能力仍然是现代时代的关键挑战之一。从自由可用的环境机械能中获取能量,如人体运动、风、波浪能和机器振动,已被证明是满足这种能量和性能要求的可行方法。摩擦纳米发电机(TENG)是为自主物联网应用提供动力的潜在能源的主要候选者之一。这些设备已经显示出从环境源中捕获废弃机械能的能力,并且很容易产生几瓦的输出功率,据报道具有很高的转换效率。然而,在过去,对TENGs的电磁行为及其确切运作方式的了解一直缺乏。因此,结构、材料和运动参数与输出功率之间的关系尚未得到充分的研究。这导致非优化的TENG架构遭受相对较低,瞬时和不规则的输出功率,以及TENG和输出应用程序之间的阻抗不匹配。这些问题降低了TENG的输出功率并显著降低了其效率。这反过来又带来了许多其他问题,如成本上升、碳足迹增加、设备尺寸增大和供电不可靠。最近,我们引入了距离依赖电场(DDEF)模型,这是第一个利用麦克斯韦方程全面描述teng工作原理的解析理论模型。该模型已被证明可以准确预测不同TENG工作模式的输出行为,并已成功应用于开发简单平面TENG的优化策略,大大减少了上述大多数问题。在拟议的项目中,我们将使用DDEF模型来优化teng的材料,设备和运动参数,以开发用于物联网应用的自主能量采集器,如健康传感器,无线通信网络,便携式和可穿戴电子产品。我们将首先评估物联网设备的能源需求,并设计具有适当效率的teng,以从环境源中捕获能量。然后对这些器件进行微调,以获得理想的尺寸,形状和材料类型,这将适合应用,同时提供最佳的电场分布,从而增加功率输出。我们将使用常见的低成本和柔性摩擦电聚合物(例如:尼龙,PET)作为TENG层,并进一步使用可扩展的低成本制造技术。以纳米技术为基础的表面改进将进一步提高这些器件的效率。从我们的模拟和计算结果中可以看出,与未优化的设备相比,建议的改进将使输出功率增加约100%。为了确保不间断的常规供电,我们将集成许多具有计算相位差的TENG单元,这将导致接近直流的输出电流。最后,我们将把电源管理电路和能量存储单元(例如:超级电容器和柔性电池)与TENG结合到物联网模块中,以组装完全集成的自供电物联网设备。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Natural silk-composite enabled versatile robust triboelectric nanogenerators for smart applications
- DOI:10.1016/j.nanoen.2021.105819
- 发表时间:2021-02-06
- 期刊:
- 影响因子:17.6
- 作者:Dudem, Bhaskar;Graham, Sontyana Adonijah;Yu, Jae Su
- 通讯作者:Yu, Jae Su
Flexible, biocompatible, and ridged silicone elastomers based robust sandwich-type triboelectric nanogenerator
基于柔性、生物相容性和脊状有机硅弹性体的坚固夹层型摩擦纳米发电机
- DOI:10.1109/ifetc49530.2021.9580514
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Riaz R
- 通讯作者:Riaz R
Contact-electrification enabled water-resistant triboelectric nanogenerators as demonstrator educational appliances
- DOI:10.1088/2515-7655/ad0739
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:V. Vivekananthan;A. Chandrasekhar;Bhaskar Dudem;G. Khandelwal;Ravi P Silva;Sang‐Jae Kim
- 通讯作者:V. Vivekananthan;A. Chandrasekhar;Bhaskar Dudem;G. Khandelwal;Ravi P Silva;Sang‐Jae Kim
Exploring the theoretical and experimental optimization of high-performance triboelectric nanogenerators using microarchitectured silk cocoon films
- DOI:10.1016/j.nanoen.2020.104882
- 发表时间:2020-08-01
- 期刊:
- 影响因子:17.6
- 作者:Dudem, Bhaskar;Dharmasena, R. D. Ishara G.;Yu, Jae Su
- 通讯作者:Yu, Jae Su
Direct current contact-mode triboelectric nanogenerators via systematic phase shifting
- DOI:10.1016/j.nanoen.2020.104887
- 发表时间:2020-09-01
- 期刊:
- 影响因子:17.6
- 作者:Dharmasena, R. D. I. G.;Cronin, H. M.;Silva, S. R. P.
- 通讯作者:Silva, S. R. P.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
S Silva其他文献
How to Display Data by Color Schemes Compatible with Red-green Color Perception Deficiencies References and Links
如何通过与红绿色感知缺陷兼容的配色方案显示数据参考和链接
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Matthias Geissbuehler;T. Lasser;B. L. D. E. Bergman;L. A. Rogowitz;Treinish;S Silva;J. Madeira;B. Santos;B. Santos;H Brettel;F. Viénot;J. Mollon;B Dougherty;A. Wade;Vischeck;C Berclaz;J. Goulley;M. Villiger;C. Pache;A. Bouwens;E. Martin;D. Van De Ville;A. C. Davison;A. Grapin;T. Lasser;W Becker;A. Bergmann;M. Hink;K. K. Nig;K. Benndorf;C. Biskup;Leitgeb;A. Bachmann;L. Steinmann;Z Kadlecova;Y. Rajendra;M. Matasci;D. Hacker;L. Baldi;F. Wurm;H. Klok;Hyperbranched;M Geissbuehler;Z. Kadlecová;C Pache;N. Bocchio;C. Berclaz;M. Gibson;C. Santschi - 通讯作者:
C. Santschi
S Silva的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('S Silva', 18)}}的其他基金
High-Efficiency Flexible and Scalable Halide-Perovskite Solar Modules
高效灵活且可扩展的卤化物钙钛矿太阳能模块
- 批准号:
EP/V027131/1 - 财政年份:2022
- 资助金额:
$ 80.61万 - 项目类别:
Research Grant
Nano-OPS Printer for High Rate Nano-Manufacturing and Support Equipment
用于高速纳米制造和支持设备的 Nano-OPS 打印机
- 批准号:
EP/R025304/1 - 财政年份:2018
- 资助金额:
$ 80.61万 - 项目类别:
Research Grant
Pulsed laser synthesis of functional nanomaterials
脉冲激光合成功能纳米材料
- 批准号:
EP/F052901/1 - 财政年份:2008
- 资助金额:
$ 80.61万 - 项目类别:
Research Grant
相似海外基金
High-performance thin film porous pyroelectric materials and composites for thermal sensing and harvesting
用于热传感和收集的高性能薄膜多孔热释电材料和复合材料
- 批准号:
EP/Y017412/1 - 财政年份:2024
- 资助金额:
$ 80.61万 - 项目类别:
Fellowship
NSF Convergence Accelerator Track M: Water-responsive Materials for Evaporation Energy Harvesting
NSF 收敛加速器轨道 M:用于蒸发能量收集的水响应材料
- 批准号:
2344305 - 财政年份:2024
- 资助金额:
$ 80.61万 - 项目类别:
Standard Grant
RE-WITCH Renewable and Waste heat valorisation in Industries via Technologies for Cooling production and energy Harvesting
RE-WITCH 通过冷却生产和能量收集技术实现工业中的可再生能源和废热价值
- 批准号:
10092071 - 财政年份:2024
- 资助金额:
$ 80.61万 - 项目类别:
EU-Funded
Exploring Microbial Light-Harvesting with Rhodopsin in Extreme Polar Environments: Unveiling Distribution, Diversity, and Functional Insights
在极端极地环境中探索利用视紫红质进行微生物光捕获:揭示分布、多样性和功能见解
- 批准号:
24K03072 - 财政年份:2024
- 资助金额:
$ 80.61万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Asymmetric Biomembranes for Blue Energy Harvesting
用于蓝色能量收集的不对称生物膜
- 批准号:
DP240101192 - 财政年份:2024
- 资助金额:
$ 80.61万 - 项目类别:
Discovery Projects
Researching the feasibility of enhancing the productivity of daffodil harvesting through the use of a daffodil collection robotic platform (Daffy)
研究利用水仙花采集机器人平台(Daffy)提高水仙花采收生产力的可行性
- 批准号:
10107691 - 财政年份:2024
- 资助金额:
$ 80.61万 - 项目类别:
Launchpad
MetacMed: Acoustic and mechanical metamaterials for biomedical and energy harvesting applications
MetacMed:用于生物医学和能量收集应用的声学和机械超材料
- 批准号:
EP/Y034635/1 - 财政年份:2024
- 资助金额:
$ 80.61万 - 项目类别:
Research Grant
Collaborative Research: OAC: Core: Harvesting Idle Resources Safely and Timely for Large-scale AI Applications in High-Performance Computing Systems
合作研究:OAC:核心:安全及时地收集闲置资源,用于高性能计算系统中的大规模人工智能应用
- 批准号:
2403399 - 财政年份:2024
- 资助金额:
$ 80.61万 - 项目类别:
Standard Grant
CAREER: Dynamics and harvesting of stochastic populations
职业:随机群体的动态和收获
- 批准号:
2339000 - 财政年份:2024
- 资助金额:
$ 80.61万 - 项目类别:
Continuing Grant
Green Optical Wireless Communications Facilitated by Photonic Power Harvesting "GreenCom"
光子能量收集“GreenCom”促进绿色光无线通信
- 批准号:
EP/X027511/2 - 财政年份:2024
- 资助金额:
$ 80.61万 - 项目类别:
Research Grant














{{item.name}}会员




