Understanding and enhancing the mechanical performance of bioinspired zirconia-based dental materials
了解和增强仿生氧化锆牙科材料的机械性能
基本信息
- 批准号:EP/S022813/1
- 负责人:
- 金额:$ 32.14万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Oral disease such as tooth decay is one of the major healthcare challenges that affects over 40% of the world's population and over 30% of dentate adults in England. Such disease can lead to a loss of function in teeth that can impair diet and have undesirable consequences for general health. It can also lead to a loss of aesthetics in teeth, which adversely influences social activity of the patients. Both function and aesthetics can be restored with dental crowns (e.g. porcelain-veneered zirconia frameworks), which can also help prevent patients from experiencing pain, sensitivity and infection. Driven by the ageing population in the UK who need complex dental care to restore and maintain their teeth throughout their lives, as well as the fact that over 37% of dentate adults in England have one or more crowns, there has been a growing demand for patient specific dental restorative products (e.g. dental crowns) with increased longevity. Despite a continuous improvement in the mechanical performance, the conventional porcelain-veneered zirconia frameworks still suffer from a high failure rate (approximately 6-15% over a 3- to 5- year period). The primary failure mode of these dental crowns is near-interface chipping of the porcelain veneer, due to the loads that are applied to the chewing or grinding surface of the crown during mastication (referred to as occlusal loads). Failure of dental crowns can cause extensive discomfort to patients and have high cost implications for both patients and clinicians. To alleviate the problem, it is therefore highly desirable to develop novel porcelain-free zirconia-based dental restorative materials with significantly improved resistance to cracking. Inspiration for these composites can come from natural teeth, which have an intricate architecture giving them remarkable mechanical properties, especially the resistance to fracture - particularly in tooth enamel. Tooth enamel has been shown to have graded microstructure and extraordinarily strong interfacial bonding to the resilient supporting dentine. In this project, we propose to understand and improve the mechanical performance of novel zirconia-based composites with bioinspired functionally graded and textured microstructures. Our aim is to mimic the structure and remarkable mechanical properties of natural tooth enamel. The improvement of the mechanical performance will be based on a fundamental understanding of the role of bioinspired microstructural features in determining the mechanical properties, and how the properties can be enhanced by microstructural optimisation. To achieve this, we will develop and implement advanced micro-scale mechanical and structural characterisation techniques and micromechanical modelling. We will be working in close collaboration with academic and industrial collaborators and receive clinical input. The outcomes of this project will direct the manufacturing and processing towards biomimetic materials design and optimisation for the development cycle of the next generation dental products. Patients suffering from dental disease will benefit from this work through far-reaching improvements in the state of health, personal happiness and quality of life.
口腔疾病,如蛀牙,是影响世界上超过40%的人口和英国超过30%的成年人的主要医疗保健挑战之一。这种疾病可能导致牙齿功能丧失,这可能损害饮食并对一般健康产生不良后果。它还可能导致牙齿美观的损失,这对患者的社会活动产生不利影响。功能和美观都可以通过牙冠(例如瓷贴面氧化锆框架)来恢复,这也有助于防止患者经历疼痛,敏感和感染。受英国老龄化人口的推动,他们需要复杂的牙科护理来恢复和维护他们的牙齿,以及英格兰超过37%的成年人有一个或多个牙冠,对患者特定的牙齿修复产品(例如牙冠)的需求不断增长,寿命增加。尽管在机械性能方面不断改进,但传统的瓷贴面氧化锆框架仍然遭受高失效率(在3至5年期间约6-15%)。这些牙冠的主要失效模式是瓷贴面的近界面碎裂,这是由于咀嚼期间施加到牙冠的咀嚼或研磨表面的载荷(称为咬合载荷)。牙冠的失效会给患者造成广泛的不适,并且对患者和临床医生都具有高成本影响。为了缓解该问题,因此非常需要开发具有显著改善的抗开裂性的新型无瓷氧化锆基牙科修复材料。这些复合材料的灵感可能来自天然牙齿,它们具有复杂的结构,赋予它们显着的机械性能,特别是抗断裂性-特别是在牙釉质中。牙釉质已被证明具有分级的微观结构和与弹性支撑牙本质的非常强的界面结合。 在这个项目中,我们建议理解和改善新型氧化锆基复合材料的机械性能与仿生功能梯度和纹理微观结构。我们的目标是模仿天然牙釉质的结构和显着的机械性能。机械性能的改善将基于对生物启发的微观结构特征在确定机械性能中的作用的基本理解,以及如何通过微观结构优化来增强性能。为了实现这一目标,我们将开发和实施先进的微尺度机械和结构表征技术和微机械建模。我们将与学术和工业合作者密切合作,并接受临床输入。该项目的成果将指导制造和加工,以仿生材料设计和优化下一代牙科产品的开发周期。患有牙科疾病的患者将从这项工作中受益,其健康状况、个人幸福和生活质量将得到深远的改善。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Novel in situ multi-level analysis of structural-mechanical relations in a bioinspired polyurethane-based tissue model
- DOI:10.1016/j.mtadv.2021.100184
- 发表时间:2021-12
- 期刊:
- 影响因子:10
- 作者:J. Mo;N. Leung;Priyank Gupta;B. Zhu;E. Velliou;T. Sui
- 通讯作者:J. Mo;N. Leung;Priyank Gupta;B. Zhu;E. Velliou;T. Sui
Cost-effective fabrication of bio-inspired nacre-like composite materials with high strength and toughness
- DOI:10.1016/j.compositesb.2020.108414
- 发表时间:2020-09
- 期刊:
- 影响因子:13.1
- 作者:Hong-hao Wan;N. Leung;Sana Algharaibeh;T. Sui;Qiang Liu;H. Peng;B. Su
- 通讯作者:Hong-hao Wan;N. Leung;Sana Algharaibeh;T. Sui;Qiang Liu;H. Peng;B. Su
Multi-scale structural and mechanical characterisation in bioinspired polyurethane-based pancreatic cancer model
- DOI:10.1016/j.jmrt.2021.09.041
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:J. Mo;N. Leung;P. Gupta;B. Zhu;Hui-juan Xing;Jiao Zhang;E. Velliou;T. Sui
- 通讯作者:J. Mo;N. Leung;P. Gupta;B. Zhu;Hui-juan Xing;Jiao Zhang;E. Velliou;T. Sui
Advanced microscopic characterisation of multi-scale high-resolution mechanical behaviour of a nacre-inspired composite
珍珠质复合材料多尺度高分辨率机械行为的高级微观表征
- DOI:10.1016/j.coco.2022.101315
- 发表时间:2022
- 期刊:
- 影响因子:8
- 作者:Mo J
- 通讯作者:Mo J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tan Sui其他文献
Effect of pre-aging and precipitation behavior on mechanical properties of 7055 aluminum alloy processed by hot-forming quenching
预时效和析出行为对热成型淬火 7055 铝合金力学性能的影响
- DOI:
10.1016/j.matchar.2023.112729 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:5.500
- 作者:
Haitao Jiang;Hui Xing;Zihan Xu;Bing Yang;Weijun Feng;Tan Sui;Yanfeng Han;Jiao Zhang;Sun Baode - 通讯作者:
Sun Baode
Observation of Damage Initiation for Trans-laminar Fracture Using in situ Fast Synchrotron X-ray Radiography and ex situ X-ray Computed Tomography
- DOI:
10.1007/s10443-024-10210-7 - 发表时间:
2024-02-21 - 期刊:
- 影响因子:2.900
- 作者:
Xiaodong Xu;Nathanael Leung;Urangua Jargalsaikhan;Evi Bongaers;Tan Sui - 通讯作者:
Tan Sui
Exploring short crack behaviour and fracture transition in 5052 aluminium alloy
探究5052铝合金中的短裂纹行为和断裂转变
- DOI:
10.1016/j.rineng.2025.105303 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:7.900
- 作者:
Abdalrhaman Koko;Duaa Salim;Nathanael Leung;Nassos Spetsieris;Stan Smith;David England;Tan Sui;Tony Fry - 通讯作者:
Tony Fry
Assessing residual stress and high-temperature mechanical performance of laser-welded P91 steel for fusion power plant components
用于聚变发电厂部件的激光焊接 P91 钢的残余应力和高温力学性能评估
- DOI:
10.1016/j.jmrt.2025.02.260 - 发表时间:
2025-03-01 - 期刊:
- 影响因子:6.600
- 作者:
Bin Zhu;Omar Mohamed;Abdalrhaman Koko;Hannah Zhang;Jiří Dluhoš;Yiqiang Wang;Michael Gorley;Mark J. Whiting;Tan Sui - 通讯作者:
Tan Sui
Strain to shine: stretching-induced three-dimensional symmetries in nanoparticle-assembled photonic crystals
努力闪耀:纳米粒子组装光子晶体中的拉伸诱导三维对称性
- DOI:
10.1038/s41467-024-49535-z - 发表时间:
2024-06-18 - 期刊:
- 影响因子:15.700
- 作者:
Tong An;Xinyu Jiang;Feng Gao;Christian Schäfer;Junjun Qiu;Nan Shi;Xiaokun Song;Manyao Zhang;Chris E. Finlayson;Xuezhi Zheng;Xiuhong Li;Feng Tian;Bin Zhu;Tan Sui;Xianhong Han;Jeremy J. Baumberg;Tongxiang Fan;Qibin Zhao - 通讯作者:
Qibin Zhao
Tan Sui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
FAPESP-Enhancing Hydro-Mechanical Predictions of CO2-REactive Storage reservoirs from geophysical monitoring (EHMPRES)
FAPESP - 通过地球物理监测增强 CO2 反应性储层的水力力学预测 (EHMPRES)
- 批准号:
NE/X003248/1 - 财政年份:2022
- 资助金额:
$ 32.14万 - 项目类别:
Research Grant
Self-Locomotive Antimicrobial Micro-Robot (SLAM) Enhancing Biofilm-Infected Wound Healing
自移动抗菌微型机器人 (SLAM) 增强生物膜感染伤口愈合
- 批准号:
10366359 - 财政年份:2022
- 资助金额:
$ 32.14万 - 项目类别:
Self-Locomotive Antimicrobial Micro-Robot (SLAM) Enhancing Biofilm-Infected Wound Healing
自移动抗菌微型机器人 (SLAM) 增强生物膜感染伤口愈合
- 批准号:
10612835 - 财政年份:2022
- 资助金额:
$ 32.14万 - 项目类别:
Novel peptide for enhancing diabetic wound healing
促进糖尿病伤口愈合的新型肽
- 批准号:
10383864 - 财政年份:2021
- 资助金额:
$ 32.14万 - 项目类别:
Anti-inflammatory Cell Based Repair of Intervertebral Disc Degeneration
基于抗炎细胞的椎间盘退变修复
- 批准号:
10470798 - 财政年份:2021
- 资助金额:
$ 32.14万 - 项目类别:
Novel peptide for enhancing diabetic wound healing
促进糖尿病伤口愈合的新型肽
- 批准号:
10517746 - 财政年份:2021
- 资助金额:
$ 32.14万 - 项目类别:
Anti-inflammatory Cell Based Repair of Intervertebral Disc Degeneration
基于抗炎细胞的椎间盘退变修复
- 批准号:
10669665 - 财政年份:2021
- 资助金额:
$ 32.14万 - 项目类别:














{{item.name}}会员




