HyStorPor - Hydrogen Storage in Porous Media

HyStorPor - 多孔介质中的储氢

基本信息

  • 批准号:
    EP/S027815/1
  • 负责人:
  • 金额:
    $ 142.33万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Increasing reliance on intermittent renewable electricity sources makes balancing supply to demand difficult. This will become increasingly challenging as the proportion of renewables increases into the future. One solution is the large-scale geological storage of energy in the form of hydrogen. Electricity generation from stored hydrogen can balance summer to winter seasonal energy demands, with the added potential for hydrogen to repurpose the gas grid and replace methane for heating. This is significant as the heating of buildings is currently the largest source of carbon emissions in the UK, exceeding those for electricity generation.However, the underground storage of hydrogen in porous rocks has not yet been demonstrated commercially. This project hence uses state-of-the-art laboratory experiments to address questions which require insight before commercial trials occur, focusing on the geological (underground) storage of hydrogen in geographically-widespread porous rocks. Storage of hydrogen underground is well established in caverns of halite (salt). However, in the UK this type of geology is restricted only to Teesside, Northern Ireland and Cheshire, with long and costly transport to consumers elsewhere. Methane gas in the UK is already stored underground onshore in porous reservoirs and offshore in re-purposed natural gas fields, and that provides insight to operational designs and challenges. The project partners have expertise in hydrocarbon reservoirs, geological assessment of CO2 storage, and compressed air energy storage using porous rocks.WP1 Hydrogen reactivity examines whether the hydrogen could react chemically with the rocks into which it is injected or the overlying seal rock, which could prevent the gas from being recovered and used. Controlled laboratory experiments with hydrogen injection into porous rock at subsurface temperatures and pressures will identify and quantify likely chemical reactions.WP2 Petrophysics assesses how effectively hydrogen migrates through water-filled porous media, and how much of the injected hydrogen can actually be recovered from the rock. Because the rock is made of solid grains with a network of pore spaces between, capillary forces naturally trap some of the hydrogen. How much is trapped affects the commercial viability of the whole process. Laboratory-based experimentation will inject hydrogen into rock samples to help answer this question. CT scanning provides live 3D images of the hydrogen retention in the rock pores.WP3 Flow simulation uses digital computer models of fluid flow adapted from hydrocarbon simulation to scale up from laboratory experiments to an underground storage site. Hydrogen reactive flow properties from WP1 and WP2 will be used to calibrate numerical fluid flow software codes. These models can calculate how efficiently the hydrogen can be injected, and predict how much of the hydrogen can be recovered during operation. Volumes and types of cushion gas to be left in the reservoir as a precaution to maintain operation pressure and minimise water encroachment during withdrawal periods will also be assessed.WP4 Public perception considers how societal familiarity with hydrogen may be much lower compared to natural gas. A key objective of the project is to ascertain at an early stage how citizens and key opinion shapers feel about hydrogen storage underground, and to engage civil society with the research and development process to ensure that hydrogen storage develops in a way that is both technically feasible and socially acceptable.WP5 Project management, industry advisory board, communication and outreach are essential in this type of project. Digital updates will be posted on a dedicated project website and social media channels, with presentations made at academic and industry events. Public project reports and, eventually, peer reviewed publications will provide an open access record of project progress.
对间歇性可再生电力的依赖日益增加,使得平衡供需变得困难。随着未来可再生能源比例的增加,这将变得越来越具有挑战性。一种解决方案是以氢的形式大规模地质储存能量。利用储存的氢气发电可以平衡夏季和冬季的季节性能源需求,并且氢气还有可能重新利用燃气网并取代甲烷用于供暖。这一点意义重大,因为建筑物供暖目前是英国最大的碳排放源,超过了发电碳排放源。然而,多孔岩石中的地下氢储存尚未得到商业证明。因此,该项目使用最先进的实验室实验来解决商业试验之前需要深入了解的问题,重点关注地理上广泛的多孔岩石中氢的地质(地下)储存。岩盐(盐)洞穴中已经建立了地下氢气储存设施。然而,在英国,这种类型的地质仅限于蒂赛德、北爱尔兰和柴郡,运输到其他地方的消费者需要漫长而昂贵的运输。英国的甲烷气体已经储存在陆上的地下多孔储层和海上重新利用的天然气田中,这为运营设计和挑战提供了见解。项目合作伙伴在碳氢化合物储层、二氧化碳储存地质评估以及使用多孔岩石的压缩空气储能方面拥有专业知识。WP1 氢反应性检查氢气是否会与注入的岩石或上覆的密封岩石发生化学反应,从而阻止气体的回收和使用。在地下温度和压力下将氢气注入多孔岩石的受控实验室实验将识别和量化可能的化学反应。WP2岩石物理学评估氢气通过充满水的多孔介质迁移的效率,以及实际上可以从岩石中回收多少注入的氢气。由于岩石是由固体颗粒组成,颗粒之间有孔隙空间网络,毛细管力自然会捕获一些氢。被捕获的量会影响整个过程的商业可行性。基于实验室的实验将向岩石样本中注入氢气,以帮助回答这个问题。 CT 扫描提供岩石孔隙中氢滞留的实时 3D 图像。WP3 Flow 模拟使用根据碳氢化合物模拟改编的流体流动数字计算机模型,从实验室实验扩展到地下储存场所。 WP1 和 WP2 的氢气反应流动特性将用于校准数值流体流动软件代码。这些模型可以计算氢气注入的效率,并预测在运行过程中可以回收多少氢气。还将评估留在储层中的缓冲气体的体积和类型,以作为预防措施,以维持操作压力并最大程度地减少抽水期间的水侵蚀。WP4 公众认知考虑到与天然气相比,社会对氢气的熟悉程度可能要低得多。该项目的一个关键目标是在早期阶段确定公民和关键舆论塑造者对地下储氢的看法,并让民间社会参与研发过程,以确保储氢以技术上可行和社会可接受的方式发展。WP5 项目管理、行业顾问委员会、沟通和外展对于此类项目至关重要。数字更新将发布在专门的项目网站和社交媒体渠道上,并在学术和行业活动中进行演示。公共项目报告以及最终的同行评审出版物将提供项目进展的开放获取记录。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Utilizing publicly available datasets for identifying offshore salt strata and developing salt caverns for hydrogen storage
利用公开的数据集来识别近海盐层并开发用于储氢的盐穴
Low-carbon GeoEnergy resource options in the Midland Valley of Scotland, UK
英国苏格兰米德兰山谷的低碳地球能源资源选择
  • DOI:
    10.1144/sjg2019-007
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Heinemann N
  • 通讯作者:
    Heinemann N
Hydrogen storage in saline aquifers: The role of cushion gas for injection and production
  • DOI:
    10.1016/j.ijhydene.2021.09.174
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    7.2
  • 作者:
    N. Heinemann;Jonathan Scafidi;G. Pickup;E. Thaysen;A. Hassanpouryouzband;M. Wilkinson;A. Satterley;M. Booth;K. Edlmann;R. S. Haszeldinea
  • 通讯作者:
    N. Heinemann;Jonathan Scafidi;G. Pickup;E. Thaysen;A. Hassanpouryouzband;M. Wilkinson;A. Satterley;M. Booth;K. Edlmann;R. S. Haszeldinea
Offshore Geological Storage of Hydrogen: Is This Our Best Option to Achieve Net-Zero?
  • DOI:
    10.1021/acsenergylett.1c00845
  • 发表时间:
    2021-05-17
  • 期刊:
  • 影响因子:
    22
  • 作者:
    Hassanpouryouzband, Aliakbar;Joonaki, Edris;Haszeldine, R. Stuart
  • 通讯作者:
    Haszeldine, R. Stuart
Geochemical Integrity of Wellbore Cements during Geological Hydrogen Storage.
地质氢存储期间井孔水泥的地球化学完整性。
  • DOI:
    10.1021/acs.estlett.3c00303
  • 发表时间:
    2023-07-11
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Aftab, Adnan;Hassanpouryouzband, Aliakbar;Martin, Abby;Kendrick, Jackie E. E.;Thaysen, Eike M. M.;Heinemann, Niklas;Utley, James;Wilkinson, Mark;Haszeldine, R. Stuart;Edlmann, Katriona
  • 通讯作者:
    Edlmann, Katriona
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stuart Haszeldine其他文献

FinanceForFuture: Enforcing a CO2 emitter liability using atmospheric CO2 removal deposits (ACORDs) to finance future negative emissions
FinanceForFuture:利用大气二氧化碳清除押金 (ACORD) 强制履行二氧化碳排放责任,为未来的负排放提供资金
FinanceForFuture: Enforcing a CO<sub>2</sub> emitter liability using atmospheric CO<sub>2</sub> removal deposits (ACORDs) to finance future negative emissions
  • DOI:
    10.1016/j.erss.2023.103356
  • 发表时间:
    2024-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Anders Lyngfelt;Mathias Fridahl;Stuart Haszeldine
  • 通讯作者:
    Stuart Haszeldine

Stuart Haszeldine的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stuart Haszeldine', 18)}}的其他基金

Carbon Capture and Storage: Realising the Potential
碳捕获和封存:发挥潜力
  • 批准号:
    NE/H013474/1
  • 财政年份:
    2010
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Research Grant
Quantifying and Monitoring Potential Ecosystem Impacts of Geological Carbon Storage (QICS).
量化和监测地质碳储存 (QICS) 的潜在生态系统影响。
  • 批准号:
    NE/H013989/1
  • 财政年份:
    2010
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Research Grant
UK Carbon Capture and Storage Community Network (UKCCSC)
英国碳捕获和封存社区网络(UKCCSC)
  • 批准号:
    EP/H022961/1
  • 财政年份:
    2009
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Research Grant
CO2 Aquifer Storage Site Evaluation and Monitoring ( CASSEM )
CO2 含水层封存地点评估和监测 ( CASSEM )
  • 批准号:
    DT/F007744/1
  • 财政年份:
    2008
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Research Grant

相似海外基金

High-Efficiency, Modular and Low-Cost Hydrogen Liquefaction and Storage
高效、模块化、低成本的氢气液化和储存
  • 批准号:
    DE240100863
  • 财政年份:
    2024
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Discovery Early Career Researcher Award
Fluid dynamics of underground hydrogen storage
地下储氢的流体动力学
  • 批准号:
    DE240100755
  • 财政年份:
    2024
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Discovery Early Career Researcher Award
Near-room Temperature Solid-state Hydrogen Storage
近室温固态储氢
  • 批准号:
    EP/Y007778/1
  • 财政年份:
    2024
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Research Grant
RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Standard Grant
CAS-Climate: Bubble generation and ripening in underground hydrogen storage
CAS-气候:地下储氢中气泡的产生和成熟
  • 批准号:
    2348723
  • 财政年份:
    2024
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Standard Grant
Enabling Novel Hydrogen Storage via Combustible Ice for a Low-Carbon Future
通过可燃冰实现新型储氢,实现低碳未来
  • 批准号:
    DE240100722
  • 财政年份:
    2024
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Discovery Early Career Researcher Award
Hybrid Toughening of Carbon Fibre Composites for Liquid Hydrogen Storage
用于液氢储存的碳纤维复合材料的混合增韧
  • 批准号:
    DP230101204
  • 财政年份:
    2023
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Discovery Projects
Zero-Emission: the Next-generation of Integrated Technology for Hydrogen storage (ZENITH)
零排放:下一代储氢集成技术(ZENITH)
  • 批准号:
    EP/X025403/1
  • 财政年份:
    2023
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Research Grant
Electron Irradiation of Graphene in Air at Atmospheric Pressure: a Method for Hydrogenating Graphene for Hydrogen Storage Applications
大气压下空气中石墨烯的电子辐照:一种用于储氢应用的石墨烯氢化方法
  • 批准号:
    2312436
  • 财政年份:
    2023
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Continuing Grant
SBIR Phase II: High Energy-Density Hydrogen-Halogen Flow Batteries for Energy Storage
SBIR第二阶段:用于储能的高能量密度氢卤液流电池
  • 批准号:
    2136304
  • 财政年份:
    2023
  • 资助金额:
    $ 142.33万
  • 项目类别:
    Cooperative Agreement
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了