Shape, shear, search & strife; mathematical models of bacteria

形状、剪切、搜索

基本信息

  • 批准号:
    EP/S033211/1
  • 负责人:
  • 金额:
    $ 46.09万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

This project aims to develop an integrated mathematical model to explore the early stages of bacterial biofilm formation. The project requires the development of new mathematical models that can correctly capture details of how bacteria move in fluid environments and colonize surfaces. Furthermore, recent experiments on surface-attached bacteria have identified new movement patterns that are not currently captured in existing mathematical models. We will, therefore, be undertaking mathematical research to tackle the important societal and economic challenge of biofilms. The resulting new mathematical models and techniques will also be of relevance to many other phenomena concerning active particles that can transition between existing in the bulk fluid and being attached to a surface. Bacteria are among the most primitive forms of life. Yet, despite their relative simplicity and small size, bacteria can actively sense a remarkable diversity of different environmental signals, and use this information to direct their motility towards more favourable environments. This ability to move profoundly affects where we expect to find bacteria. It is important to study biofilms because during bacterial infection the emergence of anti-microbial resistance frequently occurs within biofilms; and combatting bacterial infections in a major health challenge. Furthermore biofilms have impact beyond health: a study by the National Biofilm Innovation Centre estimated that biofilms act on a $4 trillion global industrial base operating across many sectors, including contamination of food and water supplies, disruption of oil and gas and biofouling in marine environments, and also benefitting waste-water treatment processes, biorefining and biotechnology.Many factors affect how biofilms form. In this project we focus on the very early stages of biofilm formation where the behaviour of cells, in particular the way in which they move and compete with each other, can profoundly impact what happens in the later stages. By developing a mathematical framework, we will clarify the complexity of the problem, and be able to test biological hypothesis concerning how different bacterial species compete and colonize surfaces. The ability of bacteria to swim and move up chemical gradients (chemotaxis) has been well-known for several decades. However we still cannot fully predict where the bacteria are, and how likely they are to encounter a surface, in flow environments such as the digestive tract or circulatory system. This is the challenge we address in our first objective (shape & shear). It has recently been discovered that some surface-attached bacteria can undergo chemotaxis, and our second objective (search) aims to develop a new model to explain the mechanisms for this and develop a model which can predict where bacteria will accumulate on a surface. Our final objective (strife) will investigate how bacterial strains with different growth and motility signatures compete, either indirectly through competition for resources, or directly for example through toxin production. By developing a mathematical model of this we can investigate the early spatial patterning of bacteria on a surface, which will impact the composition of resultant biofilms.
该项目旨在开发一个综合的数学模型来探索细菌生物膜形成的早期阶段。该项目需要开发新的数学模型,能够正确地捕捉细菌如何在流体环境中移动和在表面定居的细节。此外,最近对表面附着细菌的实验发现了新的运动模式,这些模式目前没有在现有的数学模型中捕捉到。因此,我们将进行数学研究,以应对生物膜这一重要的社会和经济挑战。由此产生的新的数学模型和技术也将与许多其他有关活性粒子的现象相关,这些活性粒子可以在存在于主体流体中和附着在表面之间转换。细菌是最原始的生命形式之一。然而,尽管细菌相对简单且体积较小,但它们可以主动感觉到不同环境信号的显著多样性,并利用这些信息将它们的运动引向更有利的环境。这种移动的能力深刻地影响了我们预期发现细菌的地方。研究生物膜很重要,因为在细菌感染期间,生物膜内经常会出现抗菌素耐药性;在重大的健康挑战中与细菌感染作斗争。此外,生物膜具有健康以外的影响:国家生物膜创新中心的一项研究估计,生物膜作用于一个价值4万亿美元的全球工业基地,涉及许多部门,包括食品和水供应的污染、石油和天然气的破坏以及海洋环境中的生物污染,还有利于废水处理过程、生物精炼和生物技术。许多因素影响生物膜的形成。在这个项目中,我们专注于生物膜形成的非常早期阶段,在这个阶段,细胞的行为,特别是它们移动和相互竞争的方式,可以深刻地影响后期发生的事情。通过开发一个数学框架,我们将澄清问题的复杂性,并能够检验关于不同细菌物种如何竞争和在表面定居的生物学假说。几十年来,细菌游泳和向上移动化学梯度(趋化性)的能力一直是众所周知的。然而,我们仍然不能完全预测细菌在哪里,以及它们在消化道或循环系统等流动环境中遇到表面的可能性有多大。这是我们在第一个目标(形状和剪切)中应对的挑战。最近发现一些附着在表面的细菌可以进行趋化,我们的第二个目标(搜索)旨在开发一个新的模型来解释这一机制,并开发一个可以预测细菌将在表面积累的位置的模型。我们的最终目标(冲突)将调查具有不同生长和运动特征的细菌菌株如何竞争,或者间接地通过竞争资源,或者直接例如通过产生毒素。通过建立一个数学模型,我们可以研究细菌在表面上的早期空间图案,这将影响所产生的生物膜的组成。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A local approximation model for macroscale transport of biased active Brownian particles in a flowing suspension
  • DOI:
    10.1017/jfm.2022.10
  • 发表时间:
    2022-01-31
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Fung, Lloyd;Bearon, Rachel N.;Hwang, Yongyun
  • 通讯作者:
    Hwang, Yongyun
The interplay between bulk flow and boundary conditions on the distribution of microswimmers in channel flow
  • DOI:
    10.1017/jfm.2023.897
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Smitha Maretvadakethope;A. Hazel;B. Vasiev;R. Bearon
  • 通讯作者:
    Smitha Maretvadakethope;A. Hazel;B. Vasiev;R. Bearon
A statistical interpretation of the logistic equation
逻辑方程的统计解释
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samoletov A
  • 通讯作者:
    Samoletov A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Bearon其他文献

Rachel Bearon的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Bearon', 18)}}的其他基金

DiRAC-3 Operations 2023-26 - Liverpool
DiRAC-3 运营 2023-26 - 利物浦
  • 批准号:
    ST/X000117/1
  • 财政年份:
    2023
  • 资助金额:
    $ 46.09万
  • 项目类别:
    Research Grant
Maths Research Associates 2021 Liverpool
数学研究助理 2021 利物浦
  • 批准号:
    EP/W522399/1
  • 财政年份:
    2021
  • 资助金额:
    $ 46.09万
  • 项目类别:
    Research Grant
SWIMMING PHYTOPLANKTON IN A TURBULENT ENVIRONMENT
在湍流环境中游泳的浮游植物
  • 批准号:
    EP/E002358/1
  • 财政年份:
    2007
  • 资助金额:
    $ 46.09万
  • 项目类别:
    Research Grant

相似国自然基金

基于P-T-t-D-shear sense轨迹和数值模拟探讨羌塘中部冈玛错-拉雄错地区高压变质岩的折返机制
  • 批准号:
    42172259
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
上皮钠离子通道(ENaC)在血管内皮的功能和作用
  • 批准号:
    81170236
  • 批准年份:
    2011
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
非平衡态剪切场下高分子复杂流体相行为研究
  • 批准号:
    20304002
  • 批准年份:
    2003
  • 资助金额:
    8.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

MHDSSP: Self-sustaining processes and edge states in magnetohydrodynamic flows subject to rotation and shear
MHDSSP:受到旋转和剪切作用的磁流体动力流中的自持过程和边缘状态
  • 批准号:
    EP/Y029194/1
  • 财政年份:
    2024
  • 资助金额:
    $ 46.09万
  • 项目类别:
    Fellowship
Emergent Behaviors of Dense Active Suspensions Under Shear
剪切下致密主动悬架的突现行为
  • 批准号:
    2327094
  • 财政年份:
    2024
  • 资助金额:
    $ 46.09万
  • 项目类别:
    Standard Grant
骨軟部腫瘍の診断に用いるShear wave Elastographyの有用性の検討
剪切波弹性成像诊断骨和软组织肿瘤的实用性检验
  • 批准号:
    24K19561
  • 财政年份:
    2024
  • 资助金额:
    $ 46.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
超音波内視鏡を用いた生体内shear wave速度の標準測定法の確立に向けた最適化研究
建立超声内窥镜体内剪切波速度标准测量方法的优化研究
  • 批准号:
    24K21124
  • 财政年份:
    2024
  • 资助金额:
    $ 46.09万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Shear Innovation: Valorising wool waste using biotechnology to enhance horticultural peat-free growing media
剪切创新:利用生物技术提高羊毛废料的价值,以增强园艺无泥炭生长介质
  • 批准号:
    10106787
  • 财政年份:
    2024
  • 资助金额:
    $ 46.09万
  • 项目类别:
    Launchpad
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
  • 批准号:
    2347497
  • 财政年份:
    2024
  • 资助金额:
    $ 46.09万
  • 项目类别:
    Standard Grant
Critical metal fluid migration in shear zones during tectonic switches
构造转换期间剪切带中的关键金属流体运移
  • 批准号:
    DE240100654
  • 财政年份:
    2024
  • 资助金额:
    $ 46.09万
  • 项目类别:
    Discovery Early Career Researcher Award
Self-Organizing Wave Formation in Quasi-2D Shear Turbulence
准二维剪切湍流中的自组织波形成
  • 批准号:
    24K07313
  • 财政年份:
    2024
  • 资助金额:
    $ 46.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Glenn手術後肺動静脈瘻に対するshear stressとmicroRNAを介した機序解明と治療応用
剪应力和microRNA介导的Glenn手术后肺动静脉瘘的机制及治疗应用
  • 批准号:
    24K10955
  • 财政年份:
    2024
  • 资助金额:
    $ 46.09万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Contribution of Endothelial Planar Cell Polarity pathways in Blood Flow Direction Sensing
内皮平面细胞极性通路在血流方向传感中的贡献
  • 批准号:
    10750690
  • 财政年份:
    2024
  • 资助金额:
    $ 46.09万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了