Decarbonisation of oil: Microwave-catalytic production of clean hydrogen from fossil fuels

石油脱碳:微波催化从化石燃料生产清洁氢气

基本信息

  • 批准号:
    EP/T00150X/1
  • 负责人:
  • 金额:
    $ 30.4万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

In this project a clean, efficient method will be developed to extract very pure hydrogen from fossil fuels using microwaves. Hydrogen is often called the 'fuel of the future' since it has a high energy density and when used in fuel cells the only product is water. However, it is difficult to store. Microwave assisted heterogeneous catalysis has been shown to release very pure hydrogen from fossil fuels, suppressing all unwanted side products such as carbon dioxide and methane, and leaving only solid carbon. This could solve the hydrogen storage problem and provide a green method of using the vast reserves of oil upon which the entire world relies, thus decarbonising the entire fossil fuel economy.The discovery of microwave dehydrogenation of fossil fuels is still new, and needs intensive investigation in order to realise the potential impact of the technology upon the decarbonisation of the world. There are major research challenges to be overcome. The key challenges are to drive these microwave reactions efficiently, controllably and repeatably. The net energy balance of the process is currently poor and not much more chemical energy can be obtained (in the form of H2) than the microwave energy that we put in. This work will advance the scientific understanding of the process, thereby improving efficiency of the new technology.This project will enable us to (i) precisely control the microwave fields applied to the sample, since these fields directly influence reaction conditions, consequently determining reaction pathways and selectivity and efficiency, (ii) better understand the microwave interaction and catalytic processes involved, and (iii) demonstrate an efficient microwave system for the monitoring and control of the reaction. A suite of new techniques, only made available by recent advances in microwave science, will be used to meet these challenges, such as new magnetic resonance microwave heating cavities, open structures for X-ray analysis during microwave dehydrogenation and advances in solid-state microwave sources.Hydrogen is difficult to store and transport for use as a fuel. It is widely recognised that a major scientific and technological barrier to the commercialisation and market acceptance of hydrogen based technologies such as fuel cell vehicles is the lack of a cheap, safe and effective hydrogen storage method. This remains a major problem for the scientific community. Current hydrogen storage methods use high pressure or dangerous materials. Despite extensive research globally, over the past few decades covering a vast range of hydrogen storage materials, no single material has met the critical requirements for a viable hydrogen storage material. Any such materials must achieve parity with petrochemicals in terms of cost, safety and energy density. In addition, the national infrastructure required for the storage and transportation of hydrogen as a fuel does not exist, whereas generally, much of our wider national infrastructure is built around the petrochemical storage, transportation and usage network. Extracting hydrogen from fossil fuels in an environmentally friendly process could enable the world to continue using the existing fuel transport infrastructure and petrochemical stores with no impact upon the environment at all.To attempt to overcome the issues surrounding hydrogen, we have recently demonstrated a method that uses microwaves in combination with electromagnetically designed catalysts in order to rapidly release large amounts of very pure hydrogen from hydrocarbons such as diesel at the point of use. This 24 month project will develop ultra-efficient microwave systems and microwave absorbing catalysts and will in parallel, uncover the fundamental science of the microwave dehydrogenation process, little of which is known.
在该项目中,将开发一种清洁,有效的方法,使用微波从化石燃料中提取非常纯的氢。氢通常被称为“未来的燃料”,因为它具有高能量密度,当用于燃料电池时,唯一的产物是水。然而,它很难储存。微波辅助的多相催化已被证明可以从化石燃料中释放出非常纯的氢,抑制所有不需要的副产物,如二氧化碳和甲烷,只留下固体碳。这可以解决氢的储存问题,并提供一种绿色的方法来利用整个世界所依赖的大量石油储备,从而使整个化石燃料经济脱碳。化石燃料的微波脱氢的发现仍然是新的,需要深入研究,以实现该技术对世界脱碳的潜在影响。还有一些重大的研究挑战需要克服。关键的挑战是有效地、可控地和可重复地驱动这些微波反应。该过程的净能量平衡目前很差,并且不能获得比我们投入的微波能量多得多的化学能(以H2的形式)。该项目将使我们能够(i)精确地控制施加在样品上的微波场,因为这些场直接影响反应条件,从而决定反应途径和选择性和效率,(ii)更好地了解微波相互作用和所涉及的催化过程,和(iii)展示用于监测和控制反应的有效微波系统。只有在微波科学取得最新进展后才能采用的一套新技术将用于应对这些挑战,例如新的磁共振微波加热腔、微波脱氢过程中用于X射线分析的开放结构以及固态微波源的进展。人们普遍认为,氢基技术(如燃料电池汽车)商业化和市场接受的主要科学和技术障碍是缺乏廉价、安全和有效的储氢方法。这仍然是科学界面临的一个重大问题。目前的储氢方法使用高压或危险材料。尽管在过去的几十年里,全球范围内进行了广泛的研究,涵盖了广泛的储氢材料,但没有一种材料满足可行的储氢材料的关键要求。任何此类材料都必须在成本、安全性和能量密度方面与石化产品保持同等水平。此外,储存和运输作为燃料的氢所需的国家基础设施并不存在,而一般来说,我们更广泛的国家基础设施大部分是围绕石化储存、运输和使用网络建立的。以环境友好的方式从化石燃料中提取氢气可以使世界继续使用现有的燃料运输基础设施和石化商店,而不会对环境产生任何影响。我们最近已经展示了一种方法,该方法使用微波与电磁设计的催化剂相结合,以便从氢气中快速释放大量非常纯的氢气。碳氢化合物如柴油在使用点。这个为期24个月的项目将开发超高效微波系统和微波吸收催化剂,并将同时揭示微波脱氢过程的基础科学,其中知之甚少。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Size-Dependent Microwave Heating and Catalytic Activity of Fine Iron Particles in the Deep Dehydrogenation of Hexadecane.
  • DOI:
    10.1021/acs.chemmater.2c00630
  • 发表时间:
    2022-05-24
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Jie, Xiangyu;Chen, Roujia;Biddle, Tara;Slocombe, Daniel R.;Dilworth, Jonathan Robin;Xiao, Tiancun;Edwards, Peter P.
  • 通讯作者:
    Edwards, Peter P.
Microwave-initiated catalytic deconstruction of plastic waste into hydrogen and high-value carbons
  • DOI:
    10.1038/s41929-020-00518-5
  • 发表时间:
    2020-10-12
  • 期刊:
  • 影响因子:
    37.8
  • 作者:
    Jie, Xiangyu;Li, Weisong;Edwards, Peter
  • 通讯作者:
    Edwards, Peter
Microwaves in Chemistry
化学中的微波
  • DOI:
    10.1109/jmw.2020.3029337
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Slocombe D
  • 通讯作者:
    Slocombe D
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Slocombe其他文献

Sustainable chemical processing of flowing wastewater through microwave energy
  • DOI:
    10.1016/j.chemosphere.2021.132035
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Fizza Siddique;Amir Mirzaei;Sergio Gonzalez-Cortes;Daniel Slocombe;Hamid A. Al-Megren;Tiancun Xiao;M.A. Rafiq;Peter P. Edwards
  • 通讯作者:
    Peter P. Edwards
What Happens if you Fire Lasers at Diamond Then Microwave It? A Novel Method Towards Ion Channel Study
  • DOI:
    10.1016/j.bpj.2019.11.3320
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Andrew R. Mason;William D. Jamieson;Oliver Williams;Daniel Slocombe;Oliver K. Castell
  • 通讯作者:
    Oliver K. Castell

Daniel Slocombe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Slocombe', 18)}}的其他基金

One-step reconstruction of plastic waste back to its constituent monomers (ONESTEP)
将塑料废物一步重建回其组成单体(ONESTEP)
  • 批准号:
    EP/Y003934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Research Grant

相似国自然基金

可高效清理海域泄漏原油的多孔球状聚烯烃基Oil-SAP气液两相四元共聚合的技术研究
  • 批准号:
    LTGS23E030002
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
ECMS-oil对兔波氏杆菌疫苗的佐剂作用及机理研究
  • 批准号:
    31402241
  • 批准年份:
    2014
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

REMEDIATION OF CRUDE OIL POLLUTED SOIL USING TRADITIONAL AND MICROWAVE PYROLYSIS.
使用传统和微波热解修复原油污染的土壤。
  • 批准号:
    1946648
  • 财政年份:
    2017
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Studentship
Microwave-assisted upgrading of fast pyrolysis bio-oil using structured zeolites on microwave-absorbing foam supports
在微波吸收泡沫载体上使用结构化沸石进行快速热解生物油的微波辅助升级
  • 批准号:
    EP/R000670/1
  • 财政年份:
    2017
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Research Grant
Electromagnetic inversion of microwave radar data for oil spill detection beneath sea ice
用于海冰下溢油检测的微波雷达数据电磁反演
  • 批准号:
    495590-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 30.4万
  • 项目类别:
    University Undergraduate Student Research Awards
Simulation studies of the detection of oil spills beneath sea ice using microwave radar data
利用微波雷达数据检测海冰下溢油的模拟研究
  • 批准号:
    479952-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 30.4万
  • 项目类别:
    University Undergraduate Student Research Awards
Active Microwave Remote Sensing of Oil Beneath Arctic Sea Ice
北极海冰下石油的主动微波遥感
  • 批准号:
    481618-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Microfluidic onset determination and quantification of asphaltene in crude oil using microwave sensors
使用微波传感器对原油中沥青质进行微流控起始测定和定量
  • 批准号:
    476578-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Engage Grants Program
Microwave-assisted Chemical Activation of Oil Sand Petroleum Coke
油砂石油焦的微波辅助化学活化
  • 批准号:
    465853-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 30.4万
  • 项目类别:
    University Undergraduate Student Research Awards
EAGER: Direct Upgrading and Stabilization of Pyrolysis Bio-Oil via Microwave-Induced Inverse Thermal Flux
EAGER:通过微波诱导逆热通量直接升级和稳定热解生物油
  • 批准号:
    1258821
  • 财政年份:
    2012
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Standard Grant
Conversion of oil sands coke into activated carbon absorbent using a new microwave activation process
使用新的微波活化工艺将油砂焦转化为活性炭吸收剂
  • 批准号:
    401618-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Idea to Innovation
Microwave Extraction of Oil from Tar Sands
微波从焦油砂中提取石油
  • 批准号:
    EP/F023251/1
  • 财政年份:
    2008
  • 资助金额:
    $ 30.4万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了