Biological metamaterials for enhanced noise control technology

用于增强噪声控制技术的生物超材料

基本信息

  • 批准号:
    EP/T002654/1
  • 负责人:
  • 金额:
    $ 161.99万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Invisibility cloaks are fantastic devices in popular culture from Harry Potter to Star Trek. But even in the real world so-called metamaterials (synthetic composite materials with emergent new properties) can act as (partial) cloaks both against light (vision) and sound (acoustics). We recently discovered that the 65MY old arms race with their echolocating bat predators has equipped moths with remarkable acoustic metamaterials on their wings and bodies (e.g. Shen et al. 2018 PNAS). The strength of a moth's echo determines the distance over which bats can detect it. Fur on bodies and scales on wings of moths have broadband absorptive properties that each outperform current sound absorber technology. While moth fur is a fibrous porous absorber almost twice as efficient as comparable technical solutions, the scales on moth wings have an even more exciting functional principle: Each scale resonates and together they create efficient broadband absorption of bat ultrasound. In contrast to technical solutions, these scales best absorb low frequencies, and show an unparalleled deep-subwavelength (<1% of wavelength) functionality. Their structure and (postulated) functionality make moth wings the first documented biological acoustic metamaterial - a discovery as transformative as nanoscale photonic crystals creating structural colour in butterfly scales. Our objective is to reveal the, as yet unknown, biophysics behind these evolved metamaterial absorbers and translate them into the human hearing range. In collaboration with our industry partner we will then develop prototypes for the next generation of more efficient bio-inspired noise control devices (biology-push). In return, understanding the biophysics will cross-inspire biology, as it allows us to look for and identify further acoustic metamaterials with different adaptiveness (i.e. tuneable metasurfaces; technology-pull).Unlocking the potential of evolved deeply subwavelength sound absorber metamaterials requires a coordinated, multidisciplinary, world-leading team of researchers; it is not possible to disassociate the biology from the mechanical modelling and treat the problem piecemeal. The assembled team of researchers has complementary expertise ranging from structural analysis of scales created by epidermal cells, acoustomechanical characterisation, and absorptive index assessment (lead Biology, Holderied, Robert), to theoretical biophysics of metamaterial properties (lead Applied Mathematics, Craster), to computational biophysics, modelling, and prototyping (lead Ultrasonics Engineering, Drinkwater with industry partner) and product development and commercialisation (industry partner). A range of cutting-edge technologies and methodologies (some of which pioneered in the applicants' labs exclusively) are required for this research including Dynamic Acoustic 3D imaging, Scanning Laser Doppler Vibrometry and Refractometry, X-ray nanoCT (successful Diamond synchrotron light source bid 2018), COMSOL multiphysics modelling, 3D lithography and nanoScribe 3D fabrication.Promisingly, our first lithographically produced scale replicas indeed resonate at the most important frequency for human communication (4 kHz). The outcome of our iterative effort will be novel broadband sound absorbers, that are much thinner and lighter than existing systems. These bioinspired absorbers not only have substantial economic potential (as evidenced by the commitment of our industry partner), their lower space and weight footprint promises more flexible and acceptable noise control solutions for our offices and homes. They will help in our fight against acoustic pollution (e.g. cost to the NHS of hearing loss is estimated to be 450M per year), which is the 2nd largest environmental health risk in Western Europe leading to over 10000 premature deaths every year (EEA, 2014; WHO, 2011).
在从《哈利波特》到《星际迷航》的流行文化中,隐形斗篷是一种奇妙的装置。但即使在现实世界中,所谓的超材料(具有新特性的合成复合材料)也可以作为(部分)斗篷,抵御光(视觉)和声音(声学)。我们最近发现,65年前与回声定位蝙蝠捕食者的军备竞赛为飞蛾的翅膀和身体配备了显著的声学超材料(例如,沈等人)。2018年PNAS)。飞蛾回声的强度决定了蝙蝠能探测到它的距离。蛾身上的毛皮和翅膀上的鳞片都具有宽带吸声性能,每种性能都超过了目前的吸音器技术。虽然蛾毛是一种纤维状多孔吸收器,其效率几乎是同类技术解决方案的两倍,但蛾翅上的鳞片具有更令人兴奋的功能原理:每个鳞片都会共振,它们共同创造了对蝙蝠超声波的高效宽带吸收。与技术解决方案相比,这些标尺最好地吸收低频,并显示无与伦比的深亚波长(&lt;1%的波长)功能。它们的结构和(假设的)功能使飞蛾的翅膀成为第一个被记录的生物声学超材料--这一发现就像纳米级的光子晶体在蝴蝶尺度上创造结构颜色一样具有变革性。我们的目标是揭示这些进化的超材料吸波材料背后尚不为人所知的生物物理学,并将它们转换到人类的听力范围内。然后,我们将与我们的行业合作伙伴合作,为下一代更高效的生物启发噪音控制设备(生物推送)开发原型。反过来,理解生物物理学将交叉启发生物学,因为它允许我们寻找和识别更多具有不同适应性的声学超材料(即可调的超表面;技术拉动)。释放进化的深度亚波长吸声超材料的潜力需要一个协调的、多学科的世界领先的研究团队;不可能将生物学与机械建模分开并零敲碎打地处理问题。组建的研究团队拥有互补的专业知识,从表皮细胞制造的鳞片的结构分析、声力学表征和吸收指数评估(Lead Biology,Holdered,Robert),到超材料特性的理论生物物理(Lead应用数学,Craster),到计算生物物理、建模和原型(Lead超声波工程,Drinkwater与行业合作伙伴),以及产品开发和商业化(行业合作伙伴)。这项研究需要一系列尖端技术和方法(其中一些是申请人实验室独创的),包括动态声学3D成像、扫描激光多普勒测振和折射测量、X射线纳米CT(2018年成功的钻石同步辐射光源投标)、COMSOL多物理建模、3D光刻和Nanoscribe 3D制造。我们迭代努力的结果将是新型宽带吸音器,它比现有系统更薄、更轻。这些以生物为灵感的吸音器不仅具有巨大的经济潜力(行业合作伙伴的承诺证明了这一点),而且它们较小的空间和重量占用空间为我们的办公室和家庭提供了更灵活和可接受的噪音控制解决方案。它们将帮助我们抗击声污染(例如,NHS每年因听力损失造成的成本估计为4.5亿美元),这是西欧第二大环境健康风险,每年导致超过10000人过早死亡(欧洲环保局,2014年;世卫组织,2011年)。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ultrathin entirely flat Umklapp lenses
  • DOI:
    10.1103/physrevb.101.155430
  • 发表时间:
    2020-04-28
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Chaplain, Gregory J.;Craster, Richard, V
  • 通讯作者:
    Craster, Richard, V
Wood Anomalies and Surface-Wave Excitation with a Time-Grating
木材异常和时间光栅的表面波激励
  • DOI:
    10.48550/arxiv.2004.09178
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Galiffi E
  • 通讯作者:
    Galiffi E
Underwater Focusing of Sound by Umklapp Diffraction
  • DOI:
    10.1103/physrevapplied.16.064029
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    G. Chaplain;R. Craster;N. Cole;A. Hibbins;T. Starkey
  • 通讯作者:
    G. Chaplain;R. Craster;N. Cole;A. Hibbins;T. Starkey
Experimental investigation of amplification, via a mechanical delay-line, in a rainbow-based metamaterial for energy harvesting
  • DOI:
    10.1063/5.0023544
  • 发表时间:
    2020-10-05
  • 期刊:
  • 影响因子:
    4
  • 作者:
    De Ponti, J. M.;Colombi, A.;Craster, R. V.
  • 通讯作者:
    Craster, R. V.
Ideal Photonic Weyl Nodes Stabilized by Screw Rotation Symmetry in Space Group 19
  • DOI:
    10.3390/cryst10070605
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenlong Gao;Yao-Ting Wang
  • 通讯作者:
    Wenlong Gao;Yao-Ting Wang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marc Holderied其他文献

Sleeping and Ranging Behavior of the Sambirano Mouse Lemur, Microcebus sambiranensis
  • DOI:
    10.1007/s10764-017-9997-2
  • 发表时间:
    2017-10-28
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Dan Hending;Grainne McCabe;Marc Holderied
  • 通讯作者:
    Marc Holderied
Correction: Seasonal Differences in the Encounter Rate of the Fat-Tailed Dwarf Lemur (Cheirogaleus medius) in the Transitional Forests of Northwest Madagascar: Implications for Reliable Population Density Assessment
  • DOI:
    10.1007/s10764-023-00357-8
  • 发表时间:
    2023-03-14
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Daniel Hending;Heriniaina Randrianarison;Niaina Nirina Mahefa Andriamavosoloarisoa;Christina Ranohatra-Hending;James Sedera Solofondranohatra;Haja Roger Tongasoa;Herinirina Tahina Ranarison;Victoria Gehrke;Natacha Andrianirina;Marc Holderied;Grainne McCabe;Sam Cotton
  • 通讯作者:
    Sam Cotton
Effects of Habitat Degradation on Sleeping Site Choice and Use in Sahamalaza Sportive Lemurs (Lepilemur sahamalazensis)
  • DOI:
    10.1007/s10764-013-9658-z
  • 发表时间:
    2013-02-10
  • 期刊:
  • 影响因子:
    1.800
  • 作者:
    Melanie Seiler;Marc Holderied;Christoph Schwitzer
  • 通讯作者:
    Christoph Schwitzer

Marc Holderied的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marc Holderied', 18)}}的其他基金

Diffraction of Life - biosonar camouflage, cloaking and concealment
生命的衍射 - 生物声纳伪装、隐身和隐藏
  • 批准号:
    BB/N009991/1
  • 财政年份:
    2016
  • 资助金额:
    $ 161.99万
  • 项目类别:
    Research Grant
Bats and moths in the real world: neuronal responses as adaptations to predation
现实世界中的蝙蝠和飞蛾:神经元反应作为对捕食的适应
  • 批准号:
    BB/F002386/1
  • 财政年份:
    2008
  • 资助金额:
    $ 161.99万
  • 项目类别:
    Research Grant

相似国自然基金

基于石墨烯的新型复合结构特异材料(metamaterials)实现对THz波的全新操控机制研究
  • 批准号:
    11664025
  • 批准年份:
    2016
  • 资助金额:
    42.0 万元
  • 项目类别:
    地区科学基金项目
由单负美特材料(metamaterials)组成的复合结构中电磁波的非线性传播与调控研究
  • 批准号:
    U1504110
  • 批准年份:
    2015
  • 资助金额:
    27.0 万元
  • 项目类别:
    联合基金项目
光子人工微结构中的类量子现象研究
  • 批准号:
    11234010
  • 批准年份:
    2012
  • 资助金额:
    340.0 万元
  • 项目类别:
    重点项目
三维微纳螺旋结构电磁超介质(Metamaterials)的光学特性研究
  • 批准号:
    11104094
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Metamaterials中共振结构诱导的干涉现象
  • 批准号:
    11074187
  • 批准年份:
    2010
  • 资助金额:
    40.0 万元
  • 项目类别:
    面上项目
Nanostrands-膨胀石墨电磁屏蔽材料制备及性能研究
  • 批准号:
    50977042
  • 批准年份:
    2009
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目
各向异性特异材料对电磁波脉冲调控作用的研究
  • 批准号:
    10904032
  • 批准年份:
    2009
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
近红外和可见光区Metamaterials的制备及应用研究
  • 批准号:
    10974263
  • 批准年份:
    2009
  • 资助金额:
    43.0 万元
  • 项目类别:
    面上项目
含特异材料的网络结构中光子输运特性研究
  • 批准号:
    10874129
  • 批准年份:
    2008
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
波在非均匀单负材料中的传播与控制
  • 批准号:
    10704055
  • 批准年份:
    2007
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Tunable Tensegrity Structures and Metamaterials
可调谐张拉整体结构和超材料
  • 批准号:
    2323276
  • 财政年份:
    2024
  • 资助金额:
    $ 161.99万
  • 项目类别:
    Standard Grant
Nonlocal Elastic Metamaterials: Leveraging Intentional Nonlocality to Design Programmable Structures
非局域弹性超材料:利用有意的非局域性来设计可编程结构
  • 批准号:
    2330957
  • 财政年份:
    2024
  • 资助金额:
    $ 161.99万
  • 项目类别:
    Standard Grant
PZT-hydrogel integrated active non-Hermitian complementary acoustic metamaterials with real time modulations through feedback control circuits
PZT-水凝胶集成有源非厄米互补声学超材料,通过反馈控制电路进行实时调制
  • 批准号:
    2423820
  • 财政年份:
    2024
  • 资助金额:
    $ 161.99万
  • 项目类别:
    Standard Grant
Neural-driven, active, and reconfigurable mechanical metamaterials (NARMM)
神经驱动、主动和可重构机械超材料 (NARMM)
  • 批准号:
    MR/X035506/1
  • 财政年份:
    2024
  • 资助金额:
    $ 161.99万
  • 项目类别:
    Fellowship
Conference: Mathematical Methods for Novel Metamaterials
会议:新型超材料的数学方法
  • 批准号:
    2328600
  • 财政年份:
    2024
  • 资助金额:
    $ 161.99万
  • 项目类别:
    Standard Grant
MetacMed: Acoustic and mechanical metamaterials for biomedical and energy harvesting applications
MetacMed:用于生物医学和能量收集应用的声学和机械超材料
  • 批准号:
    EP/Y034635/1
  • 财政年份:
    2024
  • 资助金额:
    $ 161.99万
  • 项目类别:
    Research Grant
CAREER: Non-Local Metamaterials and Metasurfaces for Next Generation Non-Reciprocal Acoustic Devices
职业:下一代非互易声学器件的非局域超材料和超表面
  • 批准号:
    2340782
  • 财政年份:
    2024
  • 资助金额:
    $ 161.99万
  • 项目类别:
    Standard Grant
Crystallographically-Architected Mechanical Metamaterials (CrystArMM)
晶体结构机械超材料 (CrystArMM)
  • 批准号:
    EP/X019470/1
  • 财政年份:
    2024
  • 资助金额:
    $ 161.99万
  • 项目类别:
    Research Grant
MetacMed: Acoustic and mechanical metamaterials for biomedical and energy harvesting applications
MetacMed:用于生物医学和能量收集应用的声学和机械超材料
  • 批准号:
    EP/Y036204/1
  • 财政年份:
    2024
  • 资助金额:
    $ 161.99万
  • 项目类别:
    Research Grant
Picophotonics and metamaterials driven by light
光驱动的微微光子学和超材料
  • 批准号:
    2889107
  • 财政年份:
    2023
  • 资助金额:
    $ 161.99万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了