Developing statistical downscaling to improve water quality understanding and management in the Ramganga sub-basin

开展统计降尺度以改善拉姆甘加次流域的水质了解和管理

基本信息

  • 批准号:
    EP/T003669/1
  • 负责人:
  • 金额:
    $ 58.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Empowering social inclusion through 'improving access to clean water and sanitation' for all requires arobust understanding of water-related ecosystems and the benefits that they can provide to society.However, 'the global data currently collected through the SDG process do not reflect the general state or trends known about freshwater ecosystems'. Novel mathematical sciences research is essential to enable fusion of Earth observation and on-the-ground data sources to fill the knowledge gaps, provide improved understanding of water quality and address the water management challenges faced by developing countries. This proposal will deliver world leading statistical research supporting the development of a water quality monitoring and modelling framework for the Ramganga sub-basin of the Ganges river basin.Traditional water sampling is based on a small number of sites, and is very labour intensive and expensive, and our proposal brings together data from new in-situ sensors, delivering data at high temporal frequency, coupled with intensive coupling high-end in-situ above and below water characterisation of the biogeo-optical properties of the Ramganga with measurements from calibrated miniaturised hyperspectral imaging radiometers deployed from drones, and data from new satellite missions (Sentinel 2). Together, these provide an efficient and unprecedented means of collecting significant data across a range of environments and pollution discharge scenarios of optical water types in the Ramganga basin. Coupling these data with conventional measures of WQ will provide the much desired framework for extrapolating WQ data at hitherto unachievable spatial and temporal resolutions.Covering 26% of India's total landmass, water quality and water resources in the Ganges basin are vitalfor the wellbeing of one of the largest and densest global populations (43% of India's population).However, they are being compromised due to activities such as rapid industrialization andurbanization, and mitigation efforts are hampered by lack of historical and contemporary discharge and quality data. This project will develop and implement new statistical methodology specifically for the Ramganga sub-basin to integrate the new and existing water quality data with remote sensing satellite data (both historical data from multiple sensors and new retrievals from recent Sentinel missions). To address the water quality challenges in the Ramganga sub-basin and to fully utilise the new data streams, novel statistical downscaling and data fusion methodologies through a varying coefficient, hierarchical Bayesian modelling framework will be developed to incorporate river network structure and model quantiles of flow. These approaches support integration of disparate data sources to enable prediction of water resource condition and associated uncertainties to inform risk-based modelling under a range of socio-economic and climate change scenarios, and provide tools to inform future monitoring design. The output of catchment-wide WQ estimates will be made available to policy makers and future researchers to guide policy and design future sampling sites and temporal frequency.
通过“改善清洁水和卫生设施的获取”来增强社会包容性,需要对与水有关的生态系统及其可为社会带来的惠益有深入的了解。然而,“目前通过可持续发展目标进程收集的全球数据并不能反映淡水生态系统的总体状况或趋势”。新的数学科学研究对于融合地球观测和地面数据源以填补知识空白、提高对水质的认识和应对发展中国家面临的水管理挑战至关重要。该提案将提供世界领先的统计研究,支持恒河流域Ramganga次流域水质监测和建模框架的开发。传统的水采样基于少量站点,非常劳动密集且昂贵,而我们的提案汇集了来自新的原位传感器的数据,以高时间频率提供数据,再加上密集耦合的高端现场水上和水下的Ramganga的光学特性的特征与测量校准的高光谱成像辐射计部署从无人机和数据从新的卫星任务(哨兵2)。总之,这些提供了一个有效的和前所未有的手段,收集重要的数据,在一系列的环境和污染排放的情况下,光学水类型在Ramganga盆地。将这些数据与水质量的传统测量方法相结合,将为以迄今无法实现的空间和时间分辨率外推水质量数据提供非常理想的框架。恒河流域覆盖了印度总陆地面积的26%,其水质和水资源对世界上最大和最密集的人口之一的福祉至关重要然而,由于快速的工业化和城市化等活动,它们正在受到损害,并且由于缺乏历史和当代排放和质量数据,减缓工作受到阻碍。该项目将专门为Ramganga次流域制定和实施新的统计方法,将新的和现有的水质数据与遥感卫星数据(多个传感器的历史数据和最近哨兵任务的新检索数据)相结合。为了应对Ramganga子流域的水质挑战,并充分利用新的数据流,将开发新的统计降尺度和数据融合方法,通过变系数,分层贝叶斯建模框架,将河流网络结构和流量分位数模型结合起来。这些方法支持整合不同的数据来源,以便能够预测水资源状况和相关的不确定性,为一系列社会经济和气候变化情景下的风险模型提供信息,并为今后的监测设计提供信息。全流域水质量估计的输出将提供给政策制定者和未来的研究人员,以指导政策和设计未来的采样点和时间频率。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Geochemical evolution of dissolved trace elements in space and time in the Ramganga River, India.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Surajit Ray其他文献

CAPM Reconsidered: A Robust Finite Sample Evaluation
重新考虑 CAPM:稳健的有限样本评估
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Ravikumar;Surajit Ray;N. Savin
  • 通讯作者:
    N. Savin
DISTANCE-BASED MODEL-SELECTION WITH APPLICATION TO THE ANALYSIS OF GENE EXPRESSION DATA
  • DOI:
  • 发表时间:
    2003-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Surajit Ray
  • 通讯作者:
    Surajit Ray
Functional Regression Models for South African Economic Indicators: A Growth Curve Perspective
南非经济指标的函数回归模型:增长曲线视角
  • DOI:
    10.1111/opec.12148
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siphumlile Mangisa;Sonali Das;Surajit Ray;G. Sharp
  • 通讯作者:
    G. Sharp
A New Framework for Distance-based Functional Clustering
基于距离的功能聚类的新框架
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. A. Alawi;Surajit Ray;Mayetri Gupta
  • 通讯作者:
    Mayetri Gupta
Sequence Pattern Discovery with Applications to Understanding Gene Regulation and Vaccine Design
序列模式发现及其在理解基因调控和疫苗设计中的应用
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mayetri Gupta;Surajit Ray
  • 通讯作者:
    Surajit Ray

Surajit Ray的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Surajit Ray', 18)}}的其他基金

CMG: Functional Data Modeling of Climate-Ecosystem Dynamics
CMG:气候生态系统动力学功能数据建模
  • 批准号:
    0934739
  • 财政年份:
    2009
  • 资助金额:
    $ 58.78万
  • 项目类别:
    Standard Grant

相似国自然基金

基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Exploration of the Nonequilibrium Statistical Mechanics of Turbulent Collisionless Plasmas
湍流无碰撞等离子体的非平衡统计力学探索
  • 批准号:
    2409316
  • 财政年份:
    2024
  • 资助金额:
    $ 58.78万
  • 项目类别:
    Continuing Grant
CAREER: Statistical Power Analysis and Optimal Sample Size Planning for Longitudinal Studies in STEM Education
职业:STEM 教育纵向研究的统计功效分析和最佳样本量规划
  • 批准号:
    2339353
  • 财政年份:
    2024
  • 资助金额:
    $ 58.78万
  • 项目类别:
    Continuing Grant
A statistical decision theory of cognitive capacity
认知能力的统计决策理论
  • 批准号:
    DP240101511
  • 财政年份:
    2024
  • 资助金额:
    $ 58.78万
  • 项目类别:
    Discovery Projects
PriorCircuit:Circuit mechanisms for computing and exploiting statistical structures in sensory decision making
PriorCircuit:在感官决策中计算和利用统计结构的电路机制
  • 批准号:
    EP/Z000599/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.78万
  • 项目类别:
    Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
  • 批准号:
    EP/Z531327/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.78万
  • 项目类别:
    Research Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 58.78万
  • 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
  • 批准号:
    10748606
  • 财政年份:
    2024
  • 资助金额:
    $ 58.78万
  • 项目类别:
Practical guidance on accessible statistical methods for different estimands in randomised trials
随机试验中不同估计值的可用统计方法的实用指南
  • 批准号:
    MR/Z503770/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.78万
  • 项目类别:
    Research Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
  • 批准号:
    2339829
  • 财政年份:
    2024
  • 资助金额:
    $ 58.78万
  • 项目类别:
    Continuing Grant
Conference: Emerging Statistical and Quantitative Issues in Genomic Research in Health Sciences
会议:健康科学基因组研究中新出现的统计和定量问题
  • 批准号:
    2342821
  • 财政年份:
    2024
  • 资助金额:
    $ 58.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了