Frequency metrology for precision measurements on matter-antimatter symmetry
用于精确测量物质-反物质对称性的频率计量
基本信息
- 批准号:EP/T019239/1
- 负责人:
- 金额:$ 188.47万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The virtual absence of antimatter and preponderance of matter in the Universe today remains one of the biggest conundrums facing physics. Already in 1967, the famous Sakharov conditions described how this asymmetric Universe could come about by requiring symmetry violations (i.e. differences) between matter and antimatter. Until now, no sufficient symmetry violations have been found to resolve this question, thus the puzzle remains. This project aims to seek answers to this question by directly testing the supposition that the structure of atoms made of antimatter is indistinguishable from the structure in their matter counterparts.This grant proposes the installation of a caesium fountain atomic clock which will allow spectroscopic measurements of antihydrogen with an uncertainty commensurate with how accurately we can measure time itself. This project provides state-of-the-art equipment for our long-term programme where we use this ultimate tool of precision measurements to address the antimatter conundrum. Our approach is to trap antihydrogen atoms, (atoms that we make by combining antiprotons and positrons) in order to study their internal structure using spectroscopic techniques from atomic physics. We draw from work that have given us the most precise gauges in the scientific toolbox to date and the basis for the global positioning system (GPS); atomic clocks. Specifically, we investigate the ground to first excited state transition in antihydrogen (antimatter) held in a magnetic trap to test the hypothesis that the frequency of this transition is exactly the same as that of hydrogen (matter). This transition has been investigated with a staggering 15 decimal places of precision in hydrogen. We have recently achieved a precision of 12 decimal places in antihydrogen. Improving our antimatter-work to match the result in matter experiments requires us to determine the antihydrogen 1S-2S transition frequency with the accuracy of the corresponding measurement in hydrogen. The new equipment is a state-of-the-art atomic clock identical to the type that makes the definition of the SI-second practical. Since the atomic clock directly measures the hyperfine interval in caesium as defined in the SI-system of units, it will give us the best possible absolute frequency reference and allow us to reach the precision achieved in matter with antimatter. The antimatter research that this project enables , tests the very foundations of physics that explains the world around us and forms the basis technology of increasing complexity. Despite all this success, we still do not understand why there appears to be no bulk antimatter in the Universe. In this project we look for tiny deviations from expectations based on our current understanding. Experience shows that precise observation of Nature leads to breakthroughs in our understanding. Here, antihydrogen is a compelling subject due to the very specific predictions of its properties, and the already available precise results in its matter counterpart. The risk of finding no new clues on this path is far outweighed by the risk of not looking for them when we now very clearly can. An observed difference between antihydrogen and hydrogen that can be attributed to symmetry breaking would have profound, today even unimaginable, consequences on the foundations of physics. Even if no clues are found now, there is immense intrinsic value in the most precise direct measurement of a property in antihydrogen.
今天,宇宙中几乎不存在反物质,而物质占主导地位,这仍然是物理学面临的最大难题之一。早在1967年,著名的萨哈罗夫条件就描述了这个不对称宇宙是如何通过要求物质和反物质之间的对称性破坏(即差异)来实现的。到目前为止,还没有发现足够的对称性破坏来解决这个问题,因此这个难题仍然存在。该项目旨在通过直接测试由反物质组成的原子的结构与其物质对应物的结构无法区分的假设来寻求这个问题的答案。该资助建议安装一个铯喷泉原子钟,该原子钟将允许反氢的光谱测量,其不确定性与我们测量时间本身的准确性相称。该项目为我们的长期计划提供了最先进的设备,我们使用这种精确测量的终极工具来解决反物质难题。我们的方法是捕获反氢原子(我们通过结合反质子和正电子制造的原子),以便使用原子物理学的光谱技术研究它们的内部结构。我们借鉴了迄今为止为我们提供科学工具箱中最精确的仪表和全球定位系统(GPS)基础的工作;原子钟。具体来说,我们调查的地面第一激发态的反氢(反物质)在磁阱中举行的过渡,以测试的假设,这种过渡的频率是完全相同的氢(物质)。这种转变已经在氢中以惊人的15位小数的精度进行了研究。我们最近在反氢原子中达到了小数点后12位的精度。为了改进我们的反物质工作,使之与物质实验的结果相匹配,需要我们以氢中相应测量的精度来确定反氢1 S-2S跃迁频率。新设备是一个最先进的原子钟,与使SI秒的定义变得实用的类型相同。由于原子钟直接测量铯的超精细间隔,正如SI单位制所定义的那样,它将为我们提供最好的绝对频率参考,并使我们能够达到物质与反物质的精确度。该项目所支持的反物质研究,测试了解释我们周围世界的物理学基础,并形成了日益复杂的基础技术。尽管取得了这些成功,我们仍然不明白为什么宇宙中似乎没有大量的反物质。在这个项目中,我们根据我们目前的理解寻找与预期的微小偏差。经验表明,对自然的精确观察会导致我们理解的突破。在这里,反氢是一个引人注目的主题,因为它的性质非常具体的预测,以及它的物质对应物已经有了精确的结果。在这条道路上找不到新线索的风险远远超过了在我们现在非常清楚地可以找到新线索的时候不去寻找它们的风险。反氢和氢之间观测到的差异可以归因于对称性破缺,这将对物理学基础产生深远的、今天甚至难以想象的影响。即使现在还没有发现任何线索,对反氢的性质进行最精确的直接测量也有巨大的内在价值。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design and performance of a novel low energy multispecies beamline for an antihydrogen experiment
- DOI:10.1103/physrevaccelbeams.26.040101
- 发表时间:2023-04-21
- 期刊:
- 影响因子:1.7
- 作者:Baker, C. J.;Bertsche, W.;Wurtele, J. S.
- 通讯作者:Wurtele, J. S.
Measurements of Penning-Malmberg trap patch potentials and associated performance degradation
- DOI:10.1103/physrevresearch.6.l012008
- 发表时间:2024-01
- 期刊:
- 影响因子:4.2
- 作者:C. J. Baker;W. Bertsche;A. Capra;C. L. Cesar;M. Charlton;A. Christensen;R. Collister;A. Cridland Mathad;S. Eriksson;A. Evans;N. Evetts;J. Fajans;T. Friesen;M. Fujiwara;D. Gill;P. Grandemange;P. Granum;J. Hangst;M. Hayden;D. Hodgkinson;E. Hunter;C. A. Isaac;M. A. Johnson;J. Jones;S. A. Jones;S. Jonsell;A. Khramov;L. Kurchaninov;H. Landsberger;N. Madsen;D. Maxwell;J. McKenna;S. Menary;T. Momose;P. Mullan;J. Munich;K. Olchanski;A. Olin;J. Peszka;A. Powell;P. Pusa;C. Rasmussen;F. Robicheaux;R. Sacramento;M. Sameed;E. Sarid;D. M. Silveira;C. So;G. Stutter;T. Tharp;R. Thompson;C. Torkzaban;D. P. van der Werf;E. Ward;J. Wurtele
- 通讯作者:C. J. Baker;W. Bertsche;A. Capra;C. L. Cesar;M. Charlton;A. Christensen;R. Collister;A. Cridland Mathad;S. Eriksson;A. Evans;N. Evetts;J. Fajans;T. Friesen;M. Fujiwara;D. Gill;P. Grandemange;P. Granum;J. Hangst;M. Hayden;D. Hodgkinson;E. Hunter;C. A. Isaac;M. A. Johnson;J. Jones;S. A. Jones;S. Jonsell;A. Khramov;L. Kurchaninov;H. Landsberger;N. Madsen;D. Maxwell;J. McKenna;S. Menary;T. Momose;P. Mullan;J. Munich;K. Olchanski;A. Olin;J. Peszka;A. Powell;P. Pusa;C. Rasmussen;F. Robicheaux;R. Sacramento;M. Sameed;E. Sarid;D. M. Silveira;C. So;G. Stutter;T. Tharp;R. Thompson;C. Torkzaban;D. P. van der Werf;E. Ward;J. Wurtele
On the formation of antihydrogen beams using travelling optical lattices
利用行进光学晶格形成反氢束
- DOI:10.1088/1367-2630/ac0b7b
- 发表时间:2021
- 期刊:
- 影响因子:3.3
- 作者:Madsen N
- 通讯作者:Madsen N
Antihydrogen and Fundamental Physics
- DOI:10.1007/978-3-030-51713-7
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:M. Charlton;S. Eriksson;G. Shore
- 通讯作者:M. Charlton;S. Eriksson;G. Shore
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stefan Eriksson其他文献
Provide expertise or facilitate ethical reflection? A comment on the debate between Cowley and Crosthwaite
- DOI:
10.1007/s11019-006-9003-9 - 发表时间:
2006-11-21 - 期刊:
- 影响因子:3.100
- 作者:
Stefan Eriksson;Gert Helgesson;Pär Segerdahl - 通讯作者:
Pär Segerdahl
Dose – response for radiation-induced apoptosis, residual 53BP1 foci and DNA-loop relaxation in human lymphocytes
人类淋巴细胞中辐射诱导的细胞凋亡、残留 53BP1 灶和 DNA 环松弛的剂量反应
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:2.6
- 作者:
J. Torudd;Marina Protopopova;Ruslan Sarimov;J. Nygren;Stefan Eriksson;Eva Marková;M. Chovanec;G. Selivanova;Igor Y. Belyaev - 通讯作者:
Igor Y. Belyaev
Keep people informed or leave them alone? A suggested tool for identifying research participants who rightly want only limited information
让人们了解情况还是让他们独自一人?
- DOI:
10.1136/jme.2004.009753 - 发表时间:
2005 - 期刊:
- 影响因子:4.1
- 作者:
Stefan Eriksson;G. Helgesson - 通讯作者:
G. Helgesson
Neuropeptides in temporomandibular joints with rheumatoid arthritis: a clinical study.
类风湿性关节炎颞下颌关节中的神经肽:一项临床研究。
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
A. Appelgren;B. Appelgren;Stefan Eriksson;Sigvard Kopp;Thomas Lundeberg;Michael Nylander;E. Theodorsson - 通讯作者:
E. Theodorsson
Changing defaults in biobank research could save lives too
- DOI:
10.1007/s10654-009-9413-0 - 发表时间:
2009-12-03 - 期刊:
- 影响因子:5.900
- 作者:
Joanna Stjernschantz Forsberg;Stefan Eriksson;Mats G. Hansson - 通讯作者:
Mats G. Hansson
Stefan Eriksson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stefan Eriksson', 18)}}的其他基金
Collaborative Research: Dayside Field-Aligned Current (FAC) Source Regions of Extreme Poynting Flux Events and the Response of the Magnetosphere-Ionosphere-Thermosphere System
合作研究:极端坡印廷通量事件的日侧场对准电流(FAC)源区以及磁层-电离层-热层系统的响应
- 批准号:
1144154 - 财政年份:2012
- 资助金额:
$ 188.47万 - 项目类别:
Continuing Grant
Nano-optical detection of novel phases in ultracold Fermi gases
超冷费米气体中新相的纳米光学检测
- 批准号:
EP/H043446/1 - 财政年份:2010
- 资助金额:
$ 188.47万 - 项目类别:
Research Grant
相似海外基金
STTR Phase I: Snapshot, on-machine metrology system for high-precision optical manufacturing
STTR 第一阶段:用于高精度光学制造的快照机上测量系统
- 批准号:
2322208 - 财政年份:2024
- 资助金额:
$ 188.47万 - 项目类别:
Standard Grant
Metrology for genomic profiling to support early cancer detection and precision medicine
基因组分析计量学支持早期癌症检测和精准医疗
- 批准号:
10088626 - 财政年份:2023
- 资助金额:
$ 188.47万 - 项目类别:
EU-Funded
GenomeMET: Metrology for genomic profiling to support early cancer detection and precision medicine
GenomeMET:基因组分析计量学,支持早期癌症检测和精准医学
- 批准号:
10089709 - 财政年份:2023
- 资助金额:
$ 188.47万 - 项目类别:
EU-Funded
SBIR Phase I: Novel Holographic 3D Optical Metrology Tool for Precision Low-Volume Manufacturing
SBIR 第一阶段:用于精密小批量制造的新型全息 3D 光学计量工具
- 批准号:
2127080 - 财政年份:2022
- 资助金额:
$ 188.47万 - 项目类别:
Standard Grant
I-Corps: Fringe Projection Profilometry for Precision Surface Metrology
I-Corps:用于精密表面计量的条纹投影轮廓测量法
- 批准号:
2242729 - 财政年份:2022
- 资助金额:
$ 188.47万 - 项目类别:
Standard Grant
Photometry and radiometry-based metrology for design and development of high-precision fully-autonomous robotic inspection systems
基于光度测量和辐射测量的计量,用于设计和开发高精度全自动机器人检测系统
- 批准号:
RGPIN-2017-06294 - 财政年份:2022
- 资助金额:
$ 188.47万 - 项目类别:
Discovery Grants Program - Individual
Precision Metrology Using Coherent Transient Effects and Cold Atom Interferometry Based On Homebuilt, Auto-locked Laser Systems
使用基于自制自动锁定激光系统的相干瞬态效应和冷原子干涉测量的精密计量
- 批准号:
RGPIN-2020-06114 - 财政年份:2022
- 资助金额:
$ 188.47万 - 项目类别:
Discovery Grants Program - Individual
Photometry and radiometry-based metrology for design and development of high-precision fully-autonomous robotic inspection systems
基于光度测量和辐射测量的计量,用于设计和开发高精度全自动机器人检测系统
- 批准号:
RGPIN-2017-06294 - 财政年份:2021
- 资助金额:
$ 188.47万 - 项目类别:
Discovery Grants Program - Individual
MRI: Acquisition of a Phase Stabilized Optical Frequency Comb for Precision Metrology, Quantum Sensing, Information Processing, and Novel Spectroscopy
MRI:获取用于精密计量、量子传感、信息处理和新型光谱学的相位稳定光学频率梳
- 批准号:
2117253 - 财政年份:2021
- 资助金额:
$ 188.47万 - 项目类别:
Standard Grant
Optical Clock Arrays for Precision Metrology
用于精密计量的光学时钟阵列
- 批准号:
2570070 - 财政年份:2021
- 资助金额:
$ 188.47万 - 项目类别:
Studentship