Ricci flow of manifolds with singularities at infinity

无穷远奇点流形的 Ricci 流

基本信息

  • 批准号:
    EP/T019824/1
  • 负责人:
  • 金额:
    $ 46.21万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

This proposal concerns geometric flows, which is a subject that lies at the interface of differential geometry, analysis, topology and the theory of nonlinear partial differential equations (PDEs). More specifically, we will consider Ricci flow, which is a way of taking a curved space, known as a Riemannian manifold, and deforming it in time to make it more uniform.The importance of the field cannot be overstated. Ricci flow is famous for solving a string of major problems such as the 100 year old Poincaré conjecture, which had a $1,000,000 bounty attached to it, and Thurston's geometrisation conjecture, but the potential extent of its applications lies far beyond. Up until now, the theory has focussed almost exclusively on manifolds that are compact, or that have artificial constraints on their behaviour at infinity such as a uniform upper curvature bound or a positive uniform lower bound on the volume of every unit ball. This proposal is directed towards the next wave of applications. To realise these we must understand flows that are singular at infinity, and to do this we will need to advance the theory of nonlinear PDEs and understand better their interaction with geometry. We will require a collection of innovations, including new curvature estimates and a better understanding of the geometry at infinity of positively curved manifolds.Even partial success along these lines will transform the applicability of the field. Progress will give us an understanding of the geometry and topology of open manifolds without artificial asymptotic constraints on their geometry. We give some illustrative examples of major open problems that would fall to the advances that we envisage, such as Yau's Uniformisation Conjecture, and describe a route to achieve them.The proposal has some highly ambitious objectives. However, it also contains a collection of conjectures and problems, of varying difficulty, that push on many fronts against the central aim of understanding flows with unbounded curvature, and collapsing behaviour, at infinity. What is particularly exciting about this research direction is that only in the past few years have we been successful in developing the foundational theory to make this feasible. Thanks to the work of several international teams, including that of the PI and M. Simon in their resolution of the Anderson-Cheeger-Colding-Tian conjecture in 3D, we now have a clear idea of the required a priori estimates, which differ substantially from the scale-invariant estimates proved thus far, and we finally have a roadmap towards establishing them.
这个建议涉及几何流,这是一个位于微分几何,分析,拓扑学和非线性偏微分方程(PDE)理论的接口的主题。更具体地说,我们将考虑里奇流,这是一种将弯曲空间(称为黎曼流形)在时间上变形以使其更均匀的方法。场的重要性怎么强调都不过分。里奇流是著名的解决一系列重大问题,如100岁的庞加莱猜想,其中有$1,000,000的赏金附加到它,和瑟斯顿的几何化猜想,但其应用的潜在范围远远超出。到目前为止,该理论几乎完全集中在紧致的流形上,或者在无穷远处对其行为有人为约束的流形上,例如每个单位球的体积上的一致曲率上界或正一致下界。这一提议是针对下一波应用的。为了实现这些,我们必须理解在无穷远处奇异的流动,要做到这一点,我们需要推进非线性偏微分方程的理论,并更好地理解它们与几何的相互作用。我们需要一系列创新,包括新的曲率估计和对正弯曲流形无穷远处几何的更好理解,即使沿着这些方面取得部分成功,也将改变该领域的适用性。进展将使我们了解的几何和拓扑的开放流形没有人为的渐近约束其几何。我们给出了一些说明性的例子,主要的开放问题,将下降到我们设想的进展,如丘的均匀化猜想,并描述了一条路线来实现它们。然而,它也包含了一系列不同难度的理论和问题,这些理论和问题在许多方面都与理解无限大曲率流动和坍缩行为的中心目标背道而驰。这个研究方向特别令人兴奋的是,只有在过去的几年里,我们才成功地发展了基础理论,使其可行。感谢几个国际团队的工作,包括PI和M。Simon在他们对3D中Anderson-Cheeger-Colding-Tian猜想的解决方案中,我们现在对所需的先验估计有了一个清晰的概念,它与迄今为止证明的尺度不变估计有很大的不同,我们终于有了建立它们的路线图。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conformal tori with almost non-negative scalar curvature
$d_p$ convergence and $\epsilon$-regularity theorems for entropy and scalar curvature lower bounds.
  • DOI:
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Man-Chun Lee;A. Naber;Robin Neumayer
  • 通讯作者:
    Man-Chun Lee;A. Naber;Robin Neumayer
K\"ahler manifolds and mixed curvature
  • DOI:
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianchun Chu;Man-Chun Lee;Luen-Fai Tam
  • 通讯作者:
    Jianchun Chu;Man-Chun Lee;Luen-Fai Tam
Three-manifolds with non-negatively pinched Ricci curvature
具有非负收缩 Ricci 曲率的三流形
  • DOI:
    10.48550/arxiv.2204.00504
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lee M
  • 通讯作者:
    Lee M
Time Zero Regularity of Ricci Flow
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Topping其他文献

A uniform Poincaré estimate for quadratic differentials on closed surfaces
The importance of diversity on boards of directors’ effectiveness and its impact on innovativeness in the bioeconomy
董事会多样性对其有效性的重要性及其对生物经济创新性的影响
  • DOI:
    10.1057/s41599-020-00605-9
  • 发表时间:
    2020-10-06
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Marko Hakovirta;Navodya Denuwara;Sivashankari Bharathi;Peter Topping;Jorma Eloranta
  • 通讯作者:
    Jorma Eloranta
Towards the Willmore conjecture

Peter Topping的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Topping', 18)}}的其他基金

Generalised and Low-Regularity Solutions of Nonlinear Partial Differential Equations
非线性偏微分方程的广义低正则解
  • 批准号:
    EP/V009389/1
  • 财政年份:
    2021
  • 资助金额:
    $ 46.21万
  • 项目类别:
    Research Grant
Singularities of Geometric Partial Differential Equations
几何偏微分方程的奇异性
  • 批准号:
    EP/K00865X/1
  • 财政年份:
    2013
  • 资助金额:
    $ 46.21万
  • 项目类别:
    Research Grant

相似国自然基金

肝硬化患者4D Flow MRI血流动力学与肝脂肪和铁代谢的交互机制研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于4D Flow MRI 技术联合HA/cRGD-GD-LPs对比剂增强扫描诊断肝纤维化分期的研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于4 D-Flow MRI评估吻合口大小对动静脉瘘的血流动力学以及临床预后的影响
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
构建4D-Flow-CFD仿真模型定量评估肝硬化门静脉血流动力学
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于4D-FLOW MRI实现特发性颅内压增高患者静脉窦无创测压和血流动力学分析
  • 批准号:
    82301457
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
结合4D flow的多模态心脏磁共振成像在肥厚型心肌病中的应用研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
驻高海拔地区铁路建设工程项目员工的Flow体验、国家认同与心理韧性:积极环境心理学视角
  • 批准号:
    72271205
  • 批准年份:
    2022
  • 资助金额:
    44 万元
  • 项目类别:
    面上项目
基于Flow-through流场的双离子嵌入型电容去离子及其动力学调控研究
  • 批准号:
    52009057
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
  • 批准号:
    82071991
  • 批准年份:
    2020
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
  • 批准号:
    81801139
  • 批准年份:
    2018
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
  • 批准号:
    RGPAS-2021-00037
  • 财政年份:
    2022
  • 资助金额:
    $ 46.21万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
  • 批准号:
    RGPIN-2021-03589
  • 财政年份:
    2022
  • 资助金额:
    $ 46.21万
  • 项目类别:
    Discovery Grants Program - Individual
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
  • 批准号:
    RGPIN-2021-03589
  • 财政年份:
    2021
  • 资助金额:
    $ 46.21万
  • 项目类别:
    Discovery Grants Program - Individual
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
  • 批准号:
    RGPAS-2021-00037
  • 财政年份:
    2021
  • 资助金额:
    $ 46.21万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Mean Curvature Flow, Manifolds with Ricci curvature bounds, Representations of Isometry groups, and Eigenfunctions
平均曲率流、具有 Ricci 曲率界限的流形、等距群的表示以及本征函数
  • 批准号:
    1104392
  • 财政年份:
    2011
  • 资助金额:
    $ 46.21万
  • 项目类别:
    Continuing Grant
The Kahler Ricci flow on complete non-compact Kahler manifolds and canonical Kahler metrics/structures
完全非紧卡勒流形和规范卡勒度量/结构上的卡勒里奇流
  • 批准号:
    327637-2006
  • 财政年份:
    2010
  • 资助金额:
    $ 46.21万
  • 项目类别:
    Discovery Grants Program - Individual
The Kahler Ricci flow on complete non-compact Kahler manifolds and canonical Kahler metrics/structures
完全非紧卡勒流形和规范卡勒度量/结构上的卡勒里奇流
  • 批准号:
    327637-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 46.21万
  • 项目类别:
    Discovery Grants Program - Individual
The Kahler Ricci flow on complete non-compact Kahler manifolds and canonical Kahler metrics/structures
完全非紧卡勒流形和规范卡勒度量/结构上的卡勒里奇流
  • 批准号:
    327637-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 46.21万
  • 项目类别:
    Discovery Grants Program - Individual
The Kahler Ricci flow on complete non-compact Kahler manifolds and canonical Kahler metrics/structures
完全非紧卡勒流形和规范卡勒度量/结构上的卡勒里奇流
  • 批准号:
    327637-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 46.21万
  • 项目类别:
    Discovery Grants Program - Individual
The Kahler Ricci flow on complete non-compact Kahler manifolds and canonical Kahler metrics/structures
完全非紧卡勒流形和规范卡勒度量/结构上的卡勒里奇流
  • 批准号:
    327637-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 46.21万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了