JADE: Joint Academic Data science Endeavour - 2
JADE:联合学术数据科学努力 - 2
基本信息
- 批准号:EP/T022205/1
- 负责人:
- 金额:$ 858.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This proposal brings together 19 universities, including 12 out of 16 newly established UKRI CDTs in Artificial Intelligence. Led by the University of Oxford, with support from the Alan Turing Institute (Turing), Bath, Bristol, Cambridge, Exeter, Imperial, KCL, Leeds, Loughborough, Newcastle, QMUL, Sheffield, Southampton, Surrey, Sussex, UCL, Warwick and York, our proposal aims to build on the success of the JADE Tier 2 facility. The current JADE facility represents a unique national resource providing state of the art GPU computing facilities to world leading experts in the areas of Artificial Intelligence/Machine Learning (AI/ML) and molecular dynamics (MD) research. In addition to providing a leading compute resource, the JADE facility has also provided a nucleus around which a national consortium of AI researchers has formed, making it the de facto national compute facility for AI research. By providing a much-needed shared resource to these communities, JADE has also delivered an outstanding level of world leading science, evidenced in the twenty two pages of preliminary case studies submitted to EPSRC on 11/09/18. JADE2 will build upon these successes by providing increased computational capabilities to these communities and delivering a stronger, more robust service to address the lessons learned from the initial service. The architecture for JADE2 will be a similar to that of JADE, based on NVIDIA's DGX platform. JADE is formed from 22x DGX1V nodes. JADE2 will be over twice the size of JADE and employ the more cost effective DGX1 Max Q platform. Differences between Max Q and the premium DGX1V are centred on on a slightly reduced bandwidth to GPU memory and lower peak compute performance.Tests of relevant codes on these platforms show that, for AI/ML and Molecular Dynamics, Max Q achieves at least 3/4 performance, using 2/3 the power for 1/2 of the price. The system will be run as a national facility, providing free access to all academic users through a lightweight Resource Allocation Panel (RAP). HECBioSim will run the RAP for MD users, ATI will run the corresponding RAP for AI/ML users.
该提议汇集了19所大学,其中包括16个新成立的乌克里CDT中的12所大学。 Led by the University of Oxford, with support from the Alan Turing Institute (Turing), Bath, Bristol, Cambridge, Exeter, Imperial, KCL, Leeds, Loughborough, Newcastle, QMUL, Sheffield, Southampton, Surrey, Sussex, UCL, Warwick and York, our proposal aims to build on the success of the JADE Tier 2 facility.当前的Jade设施代表了一个独特的国家资源,为人工智能/机器学习(AI/ML)和分子动力学(MD)研究领域的世界领先专家提供了最先进的GPU计算设施。除了提供领先的计算资源外,翡翠设施还提供了一个核心,该核心围绕着国家AI研究人员组成的国家财团,使其成为AI研究的事实上的国家计算机。通过向这些社区提供急需的共享资源,Jade还提供了出色的世界领先科学水平,这在22页的初步案例研究中证明了这一点,于18/18年11月9日提交给EPSRC。 Jade2将通过为这些社区提供提高的计算能力并提供更强大,更强大的服务来解决从初始服务中学到的经验教训,从而在基于这些成功的基础上。基于NVIDIA的DGX平台,Jade2的架构将与Jade相似。玉来自22倍DGX1V节点。 Jade2的大小将超过两倍,并采用更具成本效益的DGX1最大Q平台。最大Q和高级DGX1V之间的差异以略微降低的带宽到GPU存储器和较低的峰值计算性能。这些平台上相关代码的测试表明,对于AI/ML和分子动力学,Max Q至少达到3/4的性能,使用2/3的价格达到了2/3的价格。该系统将作为国家设施运行,通过轻量级资源分配面板(RAP)为所有学术用户提供免费访问权限。 Hecbiosim将为MD用户运行RAP,ATI将为AI/ML用户运行相应的RAP。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wesley Armour其他文献
Part-time Power Measurements: nvidia-smi's Lack of Attention
兼职功率测量:nvidia-smi 缺乏关注
- DOI:
10.48550/arxiv.2312.02741 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zeyu Yang;Karel Adamek;Wesley Armour - 通讯作者:
Wesley Armour
CLEAN algorithm implementation comparisons between popular software packages
流行软件包之间的 CLEAN 算法实现比较
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Daniel Wright;Karel Ad'amek;Wesley Armour - 通讯作者:
Wesley Armour
Wesley Armour的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wesley Armour', 18)}}的其他基金
UK Square Kilometre Array (SKA) Regional Centre
英国平方公里阵列 (SKA) 区域中心
- 批准号:
ST/X002411/1 - 财政年份:2023
- 资助金额:
$ 858.78万 - 项目类别:
Research Grant
A Scaled Agile Framework (SAFe) team to contribute to software development for the Square Kilometre Array in the construction phase.
规模化敏捷框架 (SAFe) 团队将在施工阶段为平方公里阵列的软件开发做出贡献。
- 批准号:
ST/W001969/1 - 财政年份:2022
- 资助金额:
$ 858.78万 - 项目类别:
Research Grant
相似国自然基金
复杂海洋环境多水下结构系统振动声辐射分析的半解析联合计算方法
- 批准号:12372196
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
深层井中DAS数据的跨域联合特征深度网络及可解释技术研究
- 批准号:42374145
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于共用波形的MIMO雷达通信一体化空时联合设计方法
- 批准号:62301167
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
调控线粒体钙失稳纳米信使联合自噬抑制用于乳腺癌的信号级联可视化治疗研究
- 批准号:82302210
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于视网膜影像联合分子组学的视网膜动脉阻塞预后预测模型研究
- 批准号:82301205
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Inspiratory Muscle Training to Improve Total Joint Arthroplasty Outcomes
吸气肌训练可改善全关节置换术的效果
- 批准号:
10725952 - 财政年份:2023
- 资助金额:
$ 858.78万 - 项目类别:
Exploring predictors of response to a peer-mediated communication intervention for minimally verbal preschoolers with ASD
探索患有自闭症谱系障碍 (ASD) 的学龄前儿童对同伴介导的沟通干预反应的预测因素
- 批准号:
10450192 - 财政年份:2021
- 资助金额:
$ 858.78万 - 项目类别:
Exploring predictors of response to a peer-mediated communication intervention for minimally verbal preschoolers with ASD
探索患有自闭症谱系障碍 (ASD) 的学龄前儿童对同伴介导的沟通干预反应的预测因素
- 批准号:
10304006 - 财政年份:2021
- 资助金额:
$ 858.78万 - 项目类别:
The Role of Fathering in the Language Development Among Young, Low-Income African American and Latino Children
父亲在年轻、低收入非裔美国人和拉丁裔儿童语言发展中的作用
- 批准号:
10645204 - 财政年份:2020
- 资助金额:
$ 858.78万 - 项目类别: