Advanced hybrid thermochemical-compression seasonal solar energy storage and heat pump system (Solar S&HP)

先进的混合热化学压缩季节性太阳能存储和热泵系统(Solar S

基本信息

  • 批准号:
    EP/T023090/1
  • 负责人:
  • 金额:
    $ 129.2万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Solar energy can provide both electricity and heat without greenhouse gas emissions. The amount of solar radiation incident on the roof of a typical UK home still exceeds its heating demand over the year. However, there is only 1% of renewable heat from solar currently exploited in the UK. The paramount reason for that is the seasonal mismatch between heating demand and solar thermal energy availability and the lack of extensive deployment of thermal energy storage in the UK. Secondly, because of relatively weak solar radiation being far away from equator leads to relatively low temperature heat using the existing solar thermal collectors, particularly during periods outside summer. In this case, it is imperative to develop a seasonal solar energy storage that can effectively store abundant but relatively low temperature solar heat in summer and utilise this at the desired temperature for space and hot water heating in winter, so that 100% solar fraction can be used for space and hot water 'zero-carbon' heating. Thermochemical sorption energy storage technology offers higher energy density with minimum loss due to the temperature-independent means of storage, storing energy as chemical potential. However, its desorption temperature (i.e. temperature of the energy charging process) is relatively high, which makes it problematic to recover solar energy in high-latitude regions like the UK when using the most mature and economic solar thermal collector technology (flat-plate or evacuated tube type). Therefore, an advanced hybrid thermochemical sorption and vapour compression processes is proposed in this project, the integration of the electric-driven compressor, using a small amount of electricity input, enables a large amount of low or ultra-low temperature solar heat (<50 degC) to be efficiently used for thermochemical desorption, leading to enhance the efficiency, capability and flexibility of solar energy storage and heat pumping (Solar S&HP). Since such a hybrid system utilises thermal energy and electric energy simultaneously, it is a win-win solution when it couples with a solar hybrid thermal-photovoltaic (T-PV) collector. The solar T/PV collector supplies the hybrid storage system with solar heat and electricity, whilst the timely extraction of solar heat from the hybrid solar T-PV collector also allows the PV cell to operate at a lower temperature to increase its electrical conversion efficiency, leading to substantially improved overall solar energy conversion efficiency. Some other detailed advantages of the proposed system are, (1) the quality (thermal only) and quantity of different energy inputs (both thermal and electrical) can be adjusted to complement each other whilst storing energy so as to cope with highly variable weather conditions whilst maximising solar energy conversion. Even if solar electricity is not available, electricity from the grid in summer can be used, which has a ~15% lower carbon intensity than in winter. (2) The hybrid thermochemical cycle has a lower desorption temperature which reduces sensible heat loss from the solid sorbent and metallic reactor during the energy storage process which further increases the overall energy efficiency of storage system. (3) During thermal discharging in winter: (a) primary energy consumption for heating can be eliminated, and (b) the collective effect of thermal-driven and electric-driven heat pump processes can be used in extremely cold weather conditions. The whole SSTES system can provide heating at near zero carbon intensity, its carbon emission is approximately 92% and 85% lower comparing to gas boiler and electric heat pump technology, as revealed by the preliminary calculation results.
太阳能既可以提供电力又可以提供热量,而且不会排放温室气体。一个典型的英国家庭屋顶上的太阳辐射量仍然超过了全年的供暖需求。然而,目前英国只有1%的太阳能可再生热量被利用。最重要的原因是供暖需求和太阳能热能供应之间的季节性不匹配,以及英国缺乏广泛的热能储存部署。其次,由于远离赤道的太阳辐射相对较弱,使用现有的太阳能集热器导致相对低温的热量,特别是在夏季以外的时期。在这种情况下,必须开发一种季节性太阳能存储器,其可以在夏季有效地存储丰富但相对低温的太阳能热量,并在冬季以所需的温度将其用于空间和热水加热,以便100%的太阳能部分可以用于空间和热水“零碳”加热。热化学吸附储能技术提供了更高的能量密度,由于温度无关的存储方式,将能量存储为化学势,损失最小。然而,其解吸温度(即能量充电过程的温度)相对较高,这使得在使用最成熟和经济的太阳能集热器技术(平板或真空管型)时,在像英国这样的高纬度地区回收太阳能存在问题。因此,本项目提出了一种先进的热化学吸附和蒸汽压缩混合工艺,该工艺集成了电动压缩机,使用少量的电力输入,能够实现大量的低温或超低温太阳能热(<50 ℃)有效地用于热化学解吸,从而提高效率,太阳能存储和热泵(Solar S&HP)的能力和灵活性。由于这种混合系统同时利用热能和电能,因此当它与太阳能混合热光伏(T-PV)集热器耦合时,它是一个双赢的解决方案。太阳能T/PV收集器为混合存储系统提供太阳能热和电,同时从混合太阳能T-PV收集器及时提取太阳能热还允许PV电池在较低温度下操作以增加其电转换效率,从而导致显著提高的总太阳能转换效率。所提出的系统的一些其他详细优点是,(1)不同能量输入(热和电两者)的质量(仅热)和数量可以被调节以在存储能量的同时彼此补充,以便科普高度变化的天气条件,同时最大化太阳能转换。即使没有太阳能发电,也可以使用夏季电网的电力,其碳强度比冬季低约15%。(2)混合热化学循环具有较低的解吸温度,这减少了在能量存储过程期间来自固体吸附剂和金属反应器的显热损失,这进一步提高了存储系统的总体能量效率。(3)在冬季排热期间:(a)可以消除用于加热的一次能源消耗,(B)在极冷天气条件下可以使用热驱动和电驱动热泵过程的集体效应。初步计算结果表明,整个系统可以在接近零的碳强度下供热,其碳排放量比燃气锅炉和电热泵技术分别降低约92%和85%。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermochemical energy storage for cabin heating in battery powered electric vehicles
  • DOI:
    10.1016/j.enconman.2023.117325
  • 发表时间:
    2023-09
  • 期刊:
  • 影响因子:
    10.4
  • 作者:
    M. Wilks;Chenjue Wang;J. Ling-Chin;Xiaolin Wang;Huashan Bao
  • 通讯作者:
    M. Wilks;Chenjue Wang;J. Ling-Chin;Xiaolin Wang;Huashan Bao
Compressor-assisted thermochemical sorption integrated with solar photovoltaic-thermal collector for seasonal solar thermal energy storage
压缩机辅助热化学吸附与太阳能光伏集热器集成用于季节性太阳能热能存储
  • DOI:
    10.1016/j.ecmx.2022.100248
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thinsurat K
  • 通讯作者:
    Thinsurat K
Experimentally Validated Modelling of an Oscillating Diaphragm Compressor for Chemisorption Energy Technology Applications
用于化学吸附能源技术应用的振动隔膜压缩机的经过实验验证的建模
  • DOI:
    10.3390/en16010489
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Najjaran A
  • 通讯作者:
    Najjaran A
Demonstration system of pumped heat energy storage (PHES) and its round-trip efficiency
抽水蓄能(PHES)示范系统及其往返效率
  • DOI:
    10.1016/j.apenergy.2022.120580
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Ameen M
  • 通讯作者:
    Ameen M
Operation and performance of Brayton Pumped Thermal Energy Storage with additional latent storage
具有附加潜热存储的布雷顿泵浦热能存储的运行和性能
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    11.2
  • 作者:
    Max Albert
  • 通讯作者:
    Max Albert
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhiwei Ma其他文献

A Literature Research on the Performance Evaluation of Hydrate-based CO2 Capture and Separation Process
水合物基CO2捕集与分离工艺性能评价文献研究
  • DOI:
    10.1016/j.egypro.2017.03.867
  • 发表时间:
    2017-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junnan He;Yinan Liu;Zhiwei Ma;Shuai Deng;Ruikai Zhao;Li Zhao
  • 通讯作者:
    Li Zhao
Consumer Fraud Detection via P-feature Conversion
通过 P 特征转换检测消费者欺诈
AgAuSe Quantum Dots‐Based Eco‐Friendly Solar Cells
  • DOI:
    10.1002/solr.202300353
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Ziqiang Sun;Hongchao Yang;Zhiwei Ma;Ziyan Zhang;Liangri Han;Zhixuan Wang;Yejun Zhang;Xingyu Wang;Qiangbin Wang
  • 通讯作者:
    Qiangbin Wang
Source Localization in signed networks with effective distance
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Zhiwei Ma;Lei Sun;Zhiguo Ding;Yizhen Huang;Zhaolong Hu
  • 通讯作者:
    Zhaolong Hu
Shish-kebab-like heterostructured cellulose nanofibers towards advanced lithium metal battery separators
类羊肉串状异质结构纤维素纳米纤维用于先进锂金属电池隔膜

Zhiwei Ma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

一种经心房覆膜血管支架植入 Hybrid Fontan 手术的 临床新技术研究
  • 批准号:
    20Y11910600
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于深度压缩技术的Hybrid像素探测器读出系统原型机研制
  • 批准号:
    11875146
  • 批准年份:
    2018
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
模拟胰岛“hybrid”修饰抗原诱导tolDC免疫保护1型糖尿病β细胞研究
  • 批准号:
    81770777
  • 批准年份:
    2017
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
PSMA靶向Hybrid-SiO2基纳米诊疗剂用于前列腺癌HIFU治疗及增效机制研究
  • 批准号:
    81601499
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
穿戴式步行辅助的Hybrid控制体系及其据需辅助效应研究
  • 批准号:
    51505048
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于Hybrid数据的复杂系统辨识与优化设计及在低渗透油井中的应用
  • 批准号:
    61572084
  • 批准年份:
    2015
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目
波-流-植被耦合环境下射流Hybrid RANS/LES数值模拟研究
  • 批准号:
    51509075
  • 批准年份:
    2015
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
Hybrid加速结构的理论及预制研究
  • 批准号:
    11475201
  • 批准年份:
    2014
  • 资助金额:
    100.0 万元
  • 项目类别:
    面上项目
基于BGM法结合Hybrid同化开展暴雨短期集合预报方法研究
  • 批准号:
    41205073
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于Hybrid方法的大型冗余驱动机构控制策略研究
  • 批准号:
    51205392
  • 批准年份:
    2012
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Investigation of hybrid thermochemical looping process for green hydrogen production
混合热化学循环绿色制氢工艺研究
  • 批准号:
    2753256
  • 财政年份:
    2022
  • 资助金额:
    $ 129.2万
  • 项目类别:
    Studentship
Analyzing the thermochemical structure of a hybrid rocket reaction layer at high pressures using laser absorption tomography
使用激光吸收断层扫描分析高压下混合火箭反应层的热化学结构
  • 批准号:
    545903-2020
  • 财政年份:
    2022
  • 资助金额:
    $ 129.2万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Analyzing the thermochemical structure of a hybrid rocket reaction layer at high pressures using laser absorption tomography
使用激光吸收断层扫描分析高压下混合火箭反应层的热化学结构
  • 批准号:
    545903-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 129.2万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Analyzing the thermochemical structure of a hybrid rocket reaction layer at high pressures using laser absorption tomography
使用激光吸收断层扫描分析高压下混合火箭反应层的热化学结构
  • 批准号:
    545903-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 129.2万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Hybrid thermochemical and biochemical conversion of biomass for renewable fuels and products
生物质的混合热化学和生化转化可再生燃料和产品
  • 批准号:
    RGPIN-2015-05093
  • 财政年份:
    2020
  • 资助金额:
    $ 129.2万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid thermochemical and biochemical conversion of biomass for renewable fuels and products
生物质的混合热化学和生化转化可再生燃料和产品
  • 批准号:
    RGPIN-2015-05093
  • 财政年份:
    2019
  • 资助金额:
    $ 129.2万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid thermochemical and biochemical conversion of biomass for renewable fuels and products
生物质的混合热化学和生化转化用于可再生燃料和产品
  • 批准号:
    RGPIN-2015-05093
  • 财政年份:
    2018
  • 资助金额:
    $ 129.2万
  • 项目类别:
    Discovery Grants Program - Individual
Development of thermochemical/photochemical hybrid water splitting process for hydrogen production
开发热化学/光化学混合水分解制氢工艺
  • 批准号:
    18K05292
  • 财政年份:
    2018
  • 资助金额:
    $ 129.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hybrid thermochemical and biochemical conversion of biomass for renewable fuels and products
生物质的混合热化学和生化转化用于可再生燃料和产品
  • 批准号:
    RGPIN-2015-05093
  • 财政年份:
    2017
  • 资助金额:
    $ 129.2万
  • 项目类别:
    Discovery Grants Program - Individual
Hybrid thermochemical and biochemical conversion of biomass for renewable fuels and products
生物质的混合热化学和生化转化用于可再生燃料和产品
  • 批准号:
    RGPIN-2015-05093
  • 财政年份:
    2016
  • 资助金额:
    $ 129.2万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了