STOP fibrous microplastic pollution from textiles by elucidating fibre damage and manufacturing novel textiles

通过阐明纤维损伤和制造新型纺织品来阻止纺织品中的纤维微塑料污染

基本信息

  • 批准号:
    EP/T024542/1
  • 负责人:
  • 金额:
    $ 79.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Microplastics have been detected in all aquatic habitats, from deep oceans to polar icemelt and can be found in the guts and tissues of aquatic animals. More than one third of the microplastics found in the world oceans are fibrous microplastics from textiles [1]. The fibrous microplastics are released throughout the lifecycle of a textile and their presence in aquatic and terrestrial environments is now well-established phenomena. The washing of textiles annual releases an estimated 0.5 million tonnes fibrous microplastics ocean pollution, which at current rates is expected to accumulate to 22 million tonnes by 2050 [2]. Any remedial measures are challenging given the ubiquity of fibrous microplastics from textiles. Improved plastics with reduced environmental impact, plastic recycling and reduced consumption are extremely important but the release of fibrous microplastics from textiles remains a challenge. Here, we address this challenge by bringing together textile technology, computational modelling and tribology disciplines into a systematic programme of research. The overarching goal of this project is to experimentally and computationally elucidate fibre damage that leads to the generation of fibrous microplastics and use predictive computational modelling to inform the engineering of innovative textile structures which STOP the release of fibrous microplastics from textiles. There are numerous studies on the release of fibrous microplastics from textiles but the reasons for the generation of fibrous microplastic pollution are not fully elucidated. Building on our preliminary work in a systematic study, a range of bespoke textile materials and structures will be exposed to conditions commonly experienced by textiles to elucidate fibre damage and dynamic changes in the microstructure of textile materials. Gap Inc. and The Microfibre Consortium will help to identify and supply commonly employed textiles to ensure the industrial relevance of the research.For the first time, the computational wear modelling, based on non-destructive tomographic data of textile structures, will predict fibre damage. The complementary expertise of the University of Leeds and the University of Edinburgh will enable the development of a novel modelling approach. The experimental and computational understanding of fibre damage will also inform the intervention strategies to produce novel textile structures which STOP the release of fibrous microplastics from textiles under usual exposure conditions. The expert input and access to industrial-scale textile manufacturing equipment at Culimeta Saveguard UK will ensure the commercial relevance of developed technologies. The physical and/or chemical strategies can involve polymer modification during extrusion, the novel structural arrangement of fibres in fibrous assemblies, and application of surface finishes/treatment.The success of the project will - create a fundamental understanding of the fibre damage (that leads to the generation of fibrous microplastics) and microstructural changes in textiles.- build realistic and predictive computational wear models of the textile materials and open new avenues for research.- develop industrially and commercially relevant solutions to STOP the release of fibrous microplastics from textiles.[1] Boucher J and Friot D. Primary microplastics in the oceans: a global evaluation of sources. IUCN Gland, Switzerland, 2017. [2] Ellen MacArthur Foundation. A New Textiles Economy: Redesigning Fashion's Future. 2017.
从深海到极地冰融,所有水生栖息地都检测到了微塑料,水生动物的内脏和组织中都有微塑料。世界海洋中发现的微塑料中有三分之一以上是来自纺织品的纤维状微塑料[1]。纤维状微塑料在纺织品的整个生命周期中都会释放出来,它们在水生和陆地环境中的存在现在已经是公认的现象。据估计,纺织品洗涤每年释放50万吨纤维微塑料海洋污染物,按目前的速度,预计到2050年将累积到2200万吨。鉴于纺织品中纤维状微塑料的普遍存在,任何补救措施都具有挑战性。改进塑料,减少对环境的影响,塑料回收和减少消费是非常重要的,但从纺织品中释放纤维微塑料仍然是一个挑战。在这里,我们通过将纺织技术,计算建模和摩擦学学科整合到一个系统的研究计划中来应对这一挑战。该项目的总体目标是通过实验和计算阐明导致纤维微塑料产生的纤维损伤,并使用预测性计算模型为创新纺织品结构的工程提供信息,以阻止纺织品中纤维微塑料的释放。关于纺织品中纤维状微塑料的释放有许多研究,但纤维状微塑料污染产生的原因尚未完全阐明。基于我们在系统研究中的初步工作,一系列定制的纺织材料和结构将暴露于纺织品通常经历的条件下,以阐明纤维损伤和纺织材料微观结构的动态变化。Gap Inc.微纤维联盟将帮助识别和提供常用的纺织品,以确保研究的工业相关性。第一次,基于纺织品结构的非破坏性断层扫描数据的计算磨损模型将预测纤维损伤。利兹大学和爱丁堡大学的互补专业知识将使一种新的建模方法的发展成为可能。对纤维损伤的实验和计算理解也将为生产新型纺织品结构的干预策略提供信息,这些纺织品结构可以在通常的暴露条件下阻止纺织品中纤维微塑料的释放。Culimeta Saveguard UK的专家投入和工业规模纺织制造设备的使用将确保所开发技术的商业相关性。物理和/或化学策略可以涉及挤出过程中的聚合物改性,纤维组装中纤维的新型结构排列以及表面处理/处理的应用。该项目的成功将-对纤维损伤(导致纤维微塑料的产生)和纺织品的微观结构变化产生基本的理解。建立纺织材料的现实和预测性计算磨损模型,并为研究开辟新的途径。开发工业和商业相关的解决方案,以阻止纺织品中纤维状微塑料的释放。[1]Boucher J和Friot D.海洋中的初级微塑料:全球来源评估。世界自然保护联盟,瑞士,2017年。[2]艾伦·麦克阿瑟基金会。新纺织经济:重新设计时装的未来。2017.

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effect of twist level on the mechanical performance of S-glass yarns and non-crimp cross-ply composites
  • DOI:
    10.1177/1528083720987206
  • 发表时间:
    2021-01-11
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Dalfi, Hussein Kommur;Tausif, Muhammad;Yousaf, Zeshan
  • 通讯作者:
    Yousaf, Zeshan
Impact of conventional and modified ring-spun yarn structures on the generation and release of fragmented fibers (microfibers) during abrasive wear and laundering
  • DOI:
    10.1177/00405175221127709
  • 发表时间:
    2022-10-07
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Jabbar, Abdul;Palacios-Marin, Alma, V;Tausif, Muhammad
  • 通讯作者:
    Tausif, Muhammad
Fragmented fiber pollution from common textile materials and structures during laundry
  • DOI:
    10.1177/00405175221090971
  • 发表时间:
    2022-04-06
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Palacios-Marin, Alma, V;Jabbar, Abdul;Tausif, Muhammad
  • 通讯作者:
    Tausif, Muhammad
Fragmented Fibre Pollution from Common Textile Materials and Structures during Laundry
洗衣过程中常见纺织材料和结构的碎片纤维污染
Fragmented Fibre Pollution from Textiles: The Challenges & Solutions
纺织品中的碎片纤维污染:挑战
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tausif, M
  • 通讯作者:
    Tausif, M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Muhammad Tausif其他文献

Impact of Electronic Commerce Practices on Customer E-Loyalty: A Case Study of Pakistan
电子商务实践对客户电子忠诚度的影响:巴基斯坦案例研究
Ensemble learning-based estimation of reference evapotranspiration (ET<math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si277.svg" display="inline" id="d1e817" class="math"><msub><mrow></mrow><mrow><mi>o</mi></mrow></msub></math>)
  • DOI:
    10.1016/j.iot.2023.100973
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Muhammad Tausif;Sania Dilshad;Qasim Umer;Muhammad Waseem Iqbal;Zohaib Latif;Choonhwa Lee;Rab Nawaz Bashir
  • 通讯作者:
    Rab Nawaz Bashir
Ensemble learning based defect detection of laser sintering
基于集成学习的激光烧结缺陷检测
  • DOI:
    10.1049/ote2.12108
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Junyi Xin;Muhammad Faheem;Qasim Umer;Muhammad Tausif;M. Ashraf
  • 通讯作者:
    M. Ashraf
Image-based finite element modelling of fibre dynamics in polyester staple spun yarns
基于图像的聚酯短纤纺纱中纤维动力学的有限元建模
  • DOI:
    10.1016/j.compscitech.2025.111036
  • 发表时间:
    2025-03-01
  • 期刊:
  • 影响因子:
    9.800
  • 作者:
    Haoqi Zhang;Abdul Jabbar;Aonan Li;Xinxin Wang;Dongmin Yang;Muhammad Tausif
  • 通讯作者:
    Muhammad Tausif

Muhammad Tausif的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Glut1+ cancer associated fibroblasts enforce a metabolic barrier to tumor T cell infiltration
Glut1癌症相关成纤维细胞增强了肿瘤T细胞浸润的代谢屏障
  • 批准号:
    10752508
  • 财政年份:
    2024
  • 资助金额:
    $ 79.58万
  • 项目类别:
Collaborative Research: Exploring the Role of Ultra-Soft Inclusions in the Mechanics of Fibrous Materials
合作研究:探索超软夹杂物在纤维材料力学中的作用
  • 批准号:
    2235856
  • 财政年份:
    2023
  • 资助金额:
    $ 79.58万
  • 项目类别:
    Standard Grant
Multifunctional Intelligent Hierarchical Fibrous Biomaterials Integrated with Multimodal Biosensing and Feedback-Based Interventions for Healing Infected Chronic Wounds
多功能智能分层纤维生物材料与多模式生物传感和基于反馈的干预措施相结合,用于治愈感染的慢性伤口
  • 批准号:
    10861531
  • 财政年份:
    2023
  • 资助金额:
    $ 79.58万
  • 项目类别:
Targeting Oncogenic Pathways in Genetically Complex Sarcomas
靶向遗传复杂肉瘤的致癌途径
  • 批准号:
    10932623
  • 财政年份:
    2023
  • 资助金额:
    $ 79.58万
  • 项目类别:
Understanding the Role of Mechanical Boundary Conditions on Tissue Assembly and Repair in 3D Fibrous Microtissues
了解机械边界条件对 3D 纤维微组织中组织组装和修复的作用
  • 批准号:
    2311640
  • 财政年份:
    2023
  • 资助金额:
    $ 79.58万
  • 项目类别:
    Standard Grant
Continuous processing of fibrous plant-based meat structure
纤维植物肉结构的连续加工
  • 批准号:
    2889902
  • 财政年份:
    2023
  • 资助金额:
    $ 79.58万
  • 项目类别:
    Studentship
Evaluation of ability to detect fibrous tissue using X-ray phase imaging
使用 X 射线相位成像检测纤维组织的能力评估
  • 批准号:
    23K11826
  • 财政年份:
    2023
  • 资助金额:
    $ 79.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
PhycoFib – sustainable fibrous materials from microalgae
PhycoFib — 来自微藻的可持续纤维材料
  • 批准号:
    10066470
  • 财政年份:
    2023
  • 资助金额:
    $ 79.58万
  • 项目类别:
    Collaborative R&D
Targeting Macrophages to Treat Soft Tissue Sarcomas
靶向巨噬细胞治疗软组织肉瘤
  • 批准号:
    10760719
  • 财政年份:
    2023
  • 资助金额:
    $ 79.58万
  • 项目类别:
Singer SPORE Supplement
歌手 SPORE 补充品
  • 批准号:
    10912166
  • 财政年份:
    2023
  • 资助金额:
    $ 79.58万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了