Control Interface for QUantum Integrated Technology Arrays

量子集成技术阵列的控制接口

基本信息

  • 批准号:
    EP/T025743/1
  • 负责人:
  • 金额:
    $ 123.83万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

In the last decade, proof of concepts has been given and small-scale demonstrators have been built to show that the quantum devices allow obtaining unprecedented performances in practical applications. For example, dramatic enhancements can be obtained in the speed and computational power of next-generation computers (Quantum computing) using superconducting qubits. Also, disruptive performance improvements can be achieved in advanced imaging, remote sensing, long distance/secure communication (quantum cryptography) or diagnostic techniques using superconducting nanowire single-photon detectors - SNSPDs. The transition from demonstrators to practical scaled-up devices with a large number of elements is still at an early stage and a significant technological leap is required for a real breakthrough in those fields. The identified challenge in scaling-up the number of elements in quantum circuits, that is virtually identical for superconducting qubits and SNSPDs operating in Radio Frequency regime - RF-SNSPDs -, is represented by efficient multiplexing of these elements since they typically operate at cryogenic temperatures and need multiple connections for control and read-out at microwave frequencies. This makes the electronics complex, costly and difficult to scale beyond 10 to 100 of elements in the commercially available cryostats hampering their use in real-world applications. Single Flux Quantum (SFQ) electronics can operate at cryogenic temperature with unrivalled high frequency and ultra-low power consumption relying on the peculiar current to voltage relation of their basic element: the Josephson Junctions (JJ). Under proper condition, JJs generates ~2 ps width voltage pulses at repetition frequency above 500 GHz, with unprecedented time accuracy, stability and low power consumption.SFQ electronics is intrinsically scalable and we propose to use generated SFQ pulses as a source for precise and low noise frequency signals for multiplexed control and read-out of on-chip integrated qubits and RF-SNSPDs arrays. This transformative approach will allow to finally fill the gap in the existing quantum technology for a step-change at the same time in quantum science and advanced sensing applications.At this aim, we will bring together top UK expertise in nanofabrication and superconducting quantum technology, backed by a strong commitment from the UK world-leading company in SFQ electronics and quantum technologies SeeQC UK. We build on previous work carried out through Innovate UK, Marie Curie, Royal Society and European Research Council funding and make complimentary use of expertise and nanofabrication facilities to significant progress in the development of quantum technology in a 3-years targeted programme. Thanks to the strategic collaboration with National UK Quantum Technology Hubs, we will carry out joint experiments in quantum computing/simulation (Hub in Quantum computing and simulation - HQCS) and in advanced imaging (QuantIC) applications to show the game-changing nature of developed technology. Also, we will leverage support to engage closely with end-users and stakeholder maximizing the impact of the research project. Potential markets for developed technology will be exploited through the collaboration with QT hubs industry partners' network and with the strategic Industrial partners of this proposal like Kelvin Nanotechnology (KNT), Oxford Quantum Circuits (OQC) and SeeQC UK.This project is designed to generate high-quality research outputs and to deploy advanced technology in the field of quantum science. The work strongly resonates with the central themes of Horizon 2020 programmes and with the UK strategic research priorities set by Research Councils. The long-term goal is to establish a world-class experimental research programme which will have a powerful cross-disciplinary impact strengthening the UK's leading position in new science and technology to generate societal and economic benefits.
在过去的十年里,人们给出了概念证明,并建造了小规模演示器,以表明量子器件可以在实际应用中获得前所未有的性能。例如,使用超导量子比特,下一代计算机(量子计算)的速度和计算能力可以得到显着增强。此外,使用超导纳米线单光子探测器-SNSPD,可以在先进的成像,遥感,长距离/安全通信(量子密码学)或诊断技术中实现破坏性的性能改进。从示范装置过渡到具有大量元件的实际放大装置仍处于早期阶段,要在这些领域取得真实的突破,需要有重大的技术飞跃。在按比例增加量子电路中的元件数量方面所识别的挑战(对于在射频机制中操作的超导量子位和SNSPD-RF-SNSPD-而言几乎相同)由这些元件的有效复用来表示,因为它们通常在低温下操作并且需要多个连接以用于在微波频率下的控制和读出。这使得电子设备复杂、昂贵并且难以在商业上可获得的低温恒温器中扩展超过10至100个元件,从而阻碍了它们在现实世界应用中的使用。单通量量子(SFQ)电子器件可以在低温下工作,具有无与伦比的高频和超低功耗,这取决于其基本元件约瑟夫森结(JJ)的独特电流电压关系。在适当的条件下,JJs产生约2 ps宽度的电压脉冲,重复频率高于500 GHz,具有前所未有的时间精度,稳定性和低功耗SFQ电子学本质上是可扩展的,我们建议使用所产生的SFQ脉冲作为精确和低噪声频率信号的源,用于片上集成量子比特和RF-SNSPD阵列的多路复用控制和读出。这种变革性的方法将最终填补现有量子技术的差距,同时在量子科学和先进的传感应用方面实现飞跃。为此,我们将汇集英国在纳米纤维和超导量子技术方面的顶级专业知识,并得到英国世界领先的SFQ电子和量子技术公司的坚定承诺的支持。我们建立在以前的工作进行了通过创新英国,玛丽居里,皇家学会和欧洲研究理事会的资金,并利用专业知识和nanofabstraction设施,以显着的进展,在量子技术的发展在一个3年有针对性的计划。由于与英国国家量子技术中心的战略合作,我们将在量子计算/模拟(量子计算和模拟中心- HQCS)和高级成像(QuantIC)应用方面开展联合实验,以展示所开发技术的游戏改变性质。此外,我们将利用支持与最终用户和利益相关者密切合作,最大限度地提高研究项目的影响。通过与QT中心行业合作伙伴网络以及Kelvin Nanotechnology(KNT),Oxford Quantum Circuits(OQC)和SeeQC UK等战略工业合作伙伴的合作,开发开发技术的潜在市场。该项目旨在产生高质量的研究成果,并在量子科学领域部署先进技术。这项工作与“地平线2020”计划的中心主题以及研究理事会制定的英国战略研究优先事项产生了强烈的共鸣。长期目标是建立一个世界级的实验研究计划,这将有一个强大的跨学科的影响,加强英国在新的科学和技术的领先地位,产生社会和经济效益。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Superconducting Nb Nanobridges for Reduced Footprint and Efficient Next-Generation Electronics
  • DOI:
    10.1109/tasc.2022.3218895
  • 发表时间:
    2023-01-01
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Collins, Jonathan A. A.;Rose, Calum S. S.;Casaburi, Alessandro
  • 通讯作者:
    Casaburi, Alessandro
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin Weides其他文献

Towards semiconductor-superconductor hybrid qubits based on InAs/Al core/shell nanowires
基于 InAs/Al 核/壳纳米线的半导体-超导混合量子位
  • DOI:
    10.1109/iciprm.2019.8819062
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick Zellekens;Russell Deacon;Pujitha Perla;Steffen Schlör;Patrick Liebisch;Benjamin Bennemann;Mihail Lepsa;Martin Weides;Koji Ishibashi;Detlev Grützmacher;Thomas Schäpers
  • 通讯作者:
    Thomas Schäpers
ピコ秒超音波による薄膜材料の非破壊評価:100GHz を 超える超音波スペクトロスコピー
使用皮秒超声波对薄膜材料进行无损评估:超过 100 GHz 的超声波光谱
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick Zellekens;Russell S. Deacon;Steffen Scholor;Pujiha Perla;Patrick Liebisch;Benjamin Bennemann;Mihail Lepsa;Martin Weides;Koji Ishibashi;Detlev Grutzmacher and Thomas Schapers;荻 博次
  • 通讯作者:
    荻 博次

Martin Weides的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin Weides', 18)}}的其他基金

Superconducting Gatemon Quantum Computing Enabled by CryoElectronics
CryoElectronics 支持的超导 Gatemon 量子计算
  • 批准号:
    EP/X025152/1
  • 财政年份:
    2024
  • 资助金额:
    $ 123.83万
  • 项目类别:
    Research Grant
Empowering Practical Interfacing of Quantum Computing (EPIQC)
增强量子计算的实用接口 (EPIQC)
  • 批准号:
    EP/W032627/1
  • 财政年份:
    2022
  • 资助金额:
    $ 123.83万
  • 项目类别:
    Research Grant
Entangled quantum sensors: enhanced precision at the Heisenberg limit
纠缠量子传感器:提高海森堡极限的精度
  • 批准号:
    EP/T018984/1
  • 财政年份:
    2020
  • 资助金额:
    $ 123.83万
  • 项目类别:
    Research Grant

相似海外基金

A prototype interface between neutral-atom quantum processors and superconducting circuits
中性原子量子处理器和超导电路之间的原型接口
  • 批准号:
    EP/Y022688/1
  • 财政年份:
    2024
  • 资助金额:
    $ 123.83万
  • 项目类别:
    Research Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/2
  • 财政年份:
    2024
  • 资助金额:
    $ 123.83万
  • 项目类别:
    Research Grant
Deterministic quantum gate between photons in a next-generation light-matter interface
下一代光-物质界面中光子之间的确定性量子门
  • 批准号:
    EP/W035839/1
  • 财政年份:
    2023
  • 资助金额:
    $ 123.83万
  • 项目类别:
    Research Grant
Surface and Interface Engineering for Superconducting Quantum Circuits
超导量子电路的表面和界面工程
  • 批准号:
    LP210200636
  • 财政年份:
    2023
  • 资助金额:
    $ 123.83万
  • 项目类别:
    Linkage Projects
Developing a photonic interface for superconducting quantum processors
开发超导量子处理器的光子接口
  • 批准号:
    2734696
  • 财政年份:
    2022
  • 资助金额:
    $ 123.83万
  • 项目类别:
    Studentship
Quantum interface engineering with solid-state spins and photons
固态自旋和光子的量子界面工程
  • 批准号:
    2742534
  • 财政年份:
    2022
  • 资助金额:
    $ 123.83万
  • 项目类别:
    Studentship
Quantum interface engineering with solid-state spins and photons
固态自旋和光子的量子界面工程
  • 批准号:
    2780896
  • 财政年份:
    2022
  • 资助金额:
    $ 123.83万
  • 项目类别:
    Studentship
Spin-photon interface using InAs quantum dots
使用 InAs 量子点的自旋光子接口
  • 批准号:
    2745582
  • 财政年份:
    2022
  • 资助金额:
    $ 123.83万
  • 项目类别:
    Studentship
Quantum interface engineering with solid-state spins and photons
固态自旋和光子的量子界面工程
  • 批准号:
    2780899
  • 财政年份:
    2022
  • 资助金额:
    $ 123.83万
  • 项目类别:
    Studentship
On the interface between Quantum and Algorithmic Information Theory
论量子与算法信息论的接口
  • 批准号:
    567715-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 123.83万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了