CCP in Synergistic Reconstruction for Biomedical Imaging
CCP 在生物医学成像协同重建中的应用
基本信息
- 批准号:EP/T026693/1
- 负责人:
- 金额:$ 60.65万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Biomedical imaging has a crucial role in (pre)clinical research, drug development, medical diagnosis and assessment of therapy response. Often, the images are tomographic: from the measured data, (stacks of) slices or volumes representing anatomical and functional properties of the patient can be reconstructed using sophisticated algorithms. Increasingly, images from multiple types of systems such as Magnetic Resonance (MR), radionuclide imaging using Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) and X-ray Computed Tomography (CT) are analysed together. Image quality is critically dependent on image reconstruction methods. Development and testing of novel algorithms on patient data require considerable expertise and effort in software implementation. In our previous CCP on synergistic reconstruction for PET-MR, we created a network of UK and international researchers working towards integrating image reconstruction of data from integrated, simultaneous, PET-MR scanners. New multi-modality systems are now available or under development, for instance SPECT-MR or even tri-modality PET-SPECT-CT systems. At the same time, top-of-the-range multi-modality systems are expensive and instead combining single-modality scans from different time-points and systems can provide more cost-effective solutions in some cases. Synergistic image reconstruction aims to exploit the commonalities between the data from the different modalities and time points. However, cross-modality methods are particularly challenging. We will therefore extend the network to exploit synergy in multi-modal, multi-contrast, multi-time point information for biomedical applications, concentrating on the logistical and computational aspects of synergistic image reconstruction. The Open Source Software platform to be provided by this CCP will be an enabling technology which removes the frequent obstacles encountered when working with the raw medical imaging datasets, accelerating innovative developments in image reconstruction, and ultimately enabling the possibility of synergistic image reconstruction by establishing validated pipelines for processing raw data of multiple data-sets.
生物医学成像在临床前研究、药物开发、医学诊断和治疗反应评估中发挥着至关重要的作用。通常,图像是断层扫描的:根据测量的数据,可以使用复杂的算法重建表示患者的解剖和功能特性的切片或体积(堆叠)。越来越多地将来自多种类型系统的图像一起分析,例如磁共振(MR)、使用正电子发射断层扫描(PET)或单光子发射计算机断层扫描(SPECT)的放射性核素成像以及X射线计算机断层扫描(CT)。图像质量在很大程度上取决于图像重建方法。在患者数据上开发和测试新算法需要相当多的专业知识和软件实现方面的努力。在我们之前关于PET-MR协同重建的CCP中,我们创建了一个由英国和国际研究人员组成的网络,致力于整合来自集成同步PET-MR扫描仪的数据的图像重建。新的多模态系统现在可用或正在开发中,例如SPECT-MR或甚至三模态PET-SPECT-CT系统。与此同时,顶级的多模态系统是昂贵的,相反,在某些情况下,结合来自不同时间点和系统的单模态扫描可以提供更具成本效益的解决方案。协同图像重建旨在利用来自不同模态和时间点的数据之间的共性。然而,跨模态方法尤其具有挑战性。因此,我们将扩展网络,利用协同作用,多模态,多对比度,多时间点的信息,生物医学应用,集中在物流和计算方面的协同图像重建。该CCP提供的开源软件平台将是一项使能技术,可消除处理原始医学成像数据集时遇到的常见障碍,加速图像重建的创新发展,并最终通过建立经验证的管道来处理多个数据集的原始数据,从而实现协同图像重建。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structure-preserving deep learning
- DOI:10.1017/s0956792521000139
- 发表时间:2020-06
- 期刊:
- 影响因子:1.9
- 作者:E. Celledoni;Matthias Joachim Ehrhardt;Christian Etmann;R. McLachlan;B. Owren;C. Schönlieb;Ferdia Sherry
- 通讯作者:E. Celledoni;Matthias Joachim Ehrhardt;Christian Etmann;R. McLachlan;B. Owren;C. Schönlieb;Ferdia Sherry
Recent Progress in STIR 5.0
STIR 5.0 的最新进展
- DOI:10.1109/nss/mic44867.2021.9875880
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Biguri A
- 通讯作者:Biguri A
Score-Based Generative Models for PET Image Reconstruction
- DOI:10.59275/j.melba.2024-5d51
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:I. Singh;Alexander Denker;Riccardo Barbano;vZeljko Kereta;Bangti Jin;K. Thielemans;P. Maass;S. Arridge
- 通讯作者:I. Singh;Alexander Denker;Riccardo Barbano;vZeljko Kereta;Bangti Jin;K. Thielemans;P. Maass;S. Arridge
Normalisation Factor Estimation in non-TOF 3D PET from Multiple-Energy Window Data
根据多能量窗口数据对非 TOF 3D PET 进行归一化因子估计
- DOI:10.1109/nss/mic42677.2020.9507957
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Brusaferri L
- 通讯作者:Brusaferri L
Systematic Evaluation of the Impact of Involuntary Motion in Whole Body Dynamic PET
全身动态 PET 中不自主运动影响的系统评估
- DOI:10.1109/nss/mic44867.2021.9875689
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Biguri A
- 通讯作者:Biguri A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kris Thielemans其他文献
Deep Image Prior PET Reconstruction using a SIRF-Based Objective
使用基于 SIRF 的物镜进行深度图像先验 PET 重建
- DOI:
10.1109/nss/mic44845.2022.10399292 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
I. Singh;Riccardo Barbano;R. Twyman;Ž. Kereta;Bangti Jin;Simon Arridge;Kris Thielemans - 通讯作者:
Kris Thielemans
Air Fraction Correction in PET Imaging of Lung Disease – Kernel Determination
肺部疾病 PET 成像中的空气分数校正 – 核测定
- DOI:
10.1109/nss/mic44845.2022.10399046 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Francesca Leek;Andrew P. Robinson;Robert M. Moss;Frederick J. Wilson;B. Hutton;Kris Thielemans - 通讯作者:
Kris Thielemans
Challenges in neoantigen-directed therapeutics
新抗原导向疗法中的挑战
- DOI:
10.1016/j.ccell.2022.10.013 - 发表时间:
2023-01-09 - 期刊:
- 影响因子:44.500
- 作者:
Lien Lybaert;Steve Lefever;Bruno Fant;Evelien Smits;Bruno De Geest;Karine Breckpot;Luc Dirix;Steven A. Feldman;Wim van Criekinge;Kris Thielemans;Sjoerd H. van der Burg;Patrick A. Ott;Cedric Bogaert - 通讯作者:
Cedric Bogaert
PET/CT Motion Correction Exploiting Motion Models Fit on Coarsely Gated Data Applied to Finely Gated Data
PET/CT 运动校正 利用适合粗选通数据的运动模型 应用于精细选通数据
- DOI:
10.1109/nss/mic44845.2022.10399154 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
A. C. Whitehead;Kuan;S. Wollenweber;Jamie R McClelland;Kris Thielemans - 通讯作者:
Kris Thielemans
Sequence simplification of antigen coding IVT mRNA allows accelerated synthetic DNA template generation and epitope immunogenicity validation
抗原编码体外转录信使核糖核酸的序列简化允许加速合成 DNA 模板生成和表位免疫原性验证
- DOI:
10.1016/j.omtn.2025.102591 - 发表时间:
2025-09-09 - 期刊:
- 影响因子:6.100
- 作者:
Arthur Esprit;Dorien Autaers;Ilke Aernout;Ine Lentacker;Steve Pascolo;Kris Thielemans;Karine Breckpot;Lorenzo Franceschini - 通讯作者:
Lorenzo Franceschini
Kris Thielemans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kris Thielemans', 18)}}的其他基金
A framework for efficient synergistic spatiotemporal reconstruction of PET-MR dynamic data
PET-MR动态数据高效协同时空重建框架
- 批准号:
EP/P022200/1 - 财政年份:2017
- 资助金额:
$ 60.65万 - 项目类别:
Research Grant
Computational Collaborative Project in Synergistic PET-MR Reconstruction
协同 PET-MR 重建的计算合作项目
- 批准号:
EP/M022587/1 - 财政年份:2015
- 资助金额:
$ 60.65万 - 项目类别:
Research Grant
相似海外基金
AUC-GRANTED: Advancing Transformation of the Research Enterprise through Shared Resource Support Model for Collective Impact and Synergistic Effect.
AUC 授予:通过共享资源支持模型实现集体影响和协同效应,推进研究企业转型。
- 批准号:
2341110 - 财政年份:2024
- 资助金额:
$ 60.65万 - 项目类别:
Cooperative Agreement
Synergistic global change impacts on belowground biodiversity and carbon stocks in mountain ecosystems
全球变化对山区生态系统地下生物多样性和碳储量的协同影响
- 批准号:
NE/X017605/1 - 财政年份:2024
- 资助金额:
$ 60.65万 - 项目类别:
Fellowship
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036778/1 - 财政年份:2024
- 资助金额:
$ 60.65万 - 项目类别:
Research Grant
Integration of Advanced Experiments, Imaging and Computation for Synergistic Structure-Performance Design of Powders and Materials in Additive Manufac
先进实验、成像和计算的集成,用于增材制造中粉末和材料的协同结构-性能设计
- 批准号:
EP/Y036867/1 - 财政年份:2024
- 资助金额:
$ 60.65万 - 项目类别:
Research Grant
RII Track-4: NSF: Enabling Synergistic Multi-Robot Cooperation for Mobile Manipulation Beyond Individual Robotic Capabilities
RII Track-4:NSF:实现协同多机器人合作,实现超越单个机器人能力的移动操作
- 批准号:
2327313 - 财政年份:2024
- 资助金额:
$ 60.65万 - 项目类别:
Standard Grant
In vivo function-persistent polymersome nanoreactor with tumor-specific activation and safe clearance/metabolism for synergistic oxidation-chemo-immunotherapy
具有肿瘤特异性激活和安全清除/代谢作用的体内功能持久聚合物纳米反应器,用于协同氧化-化学-免疫治疗
- 批准号:
24K21109 - 财政年份:2024
- 资助金额:
$ 60.65万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Fungi-Biopolymer synergistic application in soil stabilisation
真菌-生物聚合物在土壤稳定中的协同应用
- 批准号:
EP/Y002202/1 - 财政年份:2024
- 资助金额:
$ 60.65万 - 项目类别:
Research Grant
CAREER: Enabling Scalable and Resilient Quantum Computer Architectures through Synergistic Hardware-Software Co-Design
职业:通过协同硬件软件协同设计实现可扩展且有弹性的量子计算机架构
- 批准号:
2340267 - 财政年份:2024
- 资助金额:
$ 60.65万 - 项目类别:
Continuing Grant
CAREER: Understanding the Synergistic Effects of Irradiation and Molten Salt Corrosion on NiCr Alloys
职业:了解辐照和熔盐腐蚀对镍铬合金的协同效应
- 批准号:
2340019 - 财政年份:2024
- 资助金额:
$ 60.65万 - 项目类别:
Continuing Grant
Metachronous synergistic effects of preoperative viral therapy and postoperative adjuvant immunotherapy via long-term antitumor immunity
术前病毒治疗和术后辅助免疫治疗通过长期抗肿瘤免疫产生异时协同效应
- 批准号:
23K08213 - 财政年份:2023
- 资助金额:
$ 60.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)