Big data for small patients - Building "child-size" individual predictive models for life after childhood cancer

小型患者的大数据 - 为儿童癌症后的生活建立“儿童大小”的个体预测模型

基本信息

  • 批准号:
    EP/T028017/1
  • 负责人:
  • 金额:
    $ 152.37万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Many children with cancer have radiation treatment as part of their care. As for all cancer treatments, there is a risk of lasting side-effects such as learning problems and reduced growth. Research is needed to reduce such side-effects, which is particularly important for children because of their long life expectancy. Radiation treatment is planned to give maximal dose to the tumour and minimal doses to nearby healthy organs. However, even with the most advanced ways of giving radiation (e.g. using the new Proton Beam Therapy machine in Manchester) it will never be possible to avoid all healthy organs. This fellowship will find which parts of healthy organs are particularly damaged by radiation ('the important regions'). This knowledge would be incredibly useful when planning radiation treatments, because it is often possible to spare the important regions of an organ close to the tumour but not the whole organ. Hence, finding these important regions would be a step toward allowing reduced side-effects in many children with cancer. The cancer centre with the most and the best documented children's health data in the world is St Jude Children's Research Hospital in Memphis, Tennessee. Children treated with radiation at St Jude have a very detailed and complete follow-up, and their side effects are measured using the most up-to-date methods. In this project, we will:(1) Set up a joint data analysis structure to show that our new method can be used on St Jude's data; with this, we will discover, for example, regions of the brain where radiation causes the most learning problems. (2) Measure the changes in organ size and shape between children of different ages and sizes. For this we will use images from St Jude patients as well as from 500 healthy children in the United States, aged from 6 months to 16 years that were scanned every 2 years (we have permission to use these data for research). This information will help us make our method even more precise and able to find smaller "important regions". We will also use those images to build models of growth of the organs of interest (e.g. language center, hormone glands) in children, which will be useful for researchers studying other childhood diseases.(3) Develop new and better ways to measure side-effects, using all the follow-up information obtained about a child's health as they grow into adulthood. This will mean, for example, that we can use images showing the health of each child even though taken many years after treatment.This will be the first project of this kind focused on understanding side effects in children with cancer. In the future, the results from this project will help doctors give 'smarter' radiation treatments, with fewer side-effects. The models of growing organs will also be useful for research in other childhood diseases.
许多癌症儿童接受放射治疗作为他们护理的一部分。对于所有的癌症治疗,都有可能产生持久的副作用,如学习问题和生长迟缓。需要进行研究以减少这种副作用,这对儿童特别重要,因为他们的预期寿命很长。放射治疗计划对肿瘤给予最大剂量,对附近的健康器官给予最小剂量。然而,即使使用最先进的放射治疗方法(例如使用曼彻斯特的新质子束治疗机),也永远不可能避免所有健康器官。 该研究将发现健康器官的哪些部分特别受到辐射的损害(“重要区域”)。在计划放射治疗时,这些知识将非常有用,因为通常可以保留靠近肿瘤的器官的重要区域,而不是整个器官。因此,找到这些重要的区域将是减少许多癌症儿童副作用的一步。田纳西州孟菲斯的圣裘德儿童研究医院是世界上拥有最多和最好的儿童健康数据的癌症中心。在圣犹达接受放射治疗的儿童有一个非常详细和完整的随访,他们的副作用是使用最先进的方法测量。在这个项目中,我们将:(1)建立一个联合数据分析结构,以表明我们的新方法可以用于圣犹达的数据;通过这个,我们将发现,例如,辐射导致最多学习问题的大脑区域。(2)测量不同年龄和大小的儿童之间器官大小和形状的变化。为此,我们将使用来自St Jude患者以及美国500名健康儿童的图像,年龄从6个月到16岁,每两年扫描一次(我们有权将这些数据用于研究)。这些信息将帮助我们使我们的方法更加精确,并能够找到更小的“重要区域”。我们还将使用这些图像来建立儿童感兴趣器官(例如语言中心,激素腺)的生长模型,这将对研究其他儿童疾病的研究人员有用。(3)开发新的和更好的方法来衡量副作用,使用所有的后续信息获得有关儿童的健康,因为他们长大成人。这意味着,例如,我们可以使用图像显示每个孩子的健康状况,即使是在治疗多年后拍摄的。这将是第一个专注于了解癌症儿童副作用的项目。在未来,该项目的结果将帮助医生提供“更智能”的放射治疗,副作用更少。生长器官的模型也将有助于其他儿童疾病的研究。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AUTOMATIC DETECTION OF FACIAL LOCATIONS TO MEASURE FACIAL ASYMMETRY AFTER PAEDIATRIC RADIOTHERAPY
自动检测面部位置以测量小儿放射治疗后的面部不对称度
  • DOI:
    10.1093/neuonc/noad147.059
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    15.9
  • 作者:
    Dronne C
  • 通讯作者:
    Dronne C
OC-0777 Automated analysis of internal facial asymmetry on MRI in children
OC-0777 儿童 MRI 面部内部不对称的自动分析
  • DOI:
    10.1016/s0167-8140(23)08718-2
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Davey A
  • 通讯作者:
    Davey A
MO-0222 A neural network to create super-resolution MR from multiple 2D brain scans of paediatric patients
MO-0222 一种神经网络,可根据儿科患者的多次 2D 脑部扫描创建超分辨率 MR
  • DOI:
    10.1016/s0167-8140(23)08349-4
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Benitez-Aurioles J
  • 通讯作者:
    Benitez-Aurioles J
The need for consensus on delineation and dose constraints of dentofacial structures in paediatric radiotherapy: Outcomes of a SIOP Europe survey.
  • DOI:
    10.1016/j.ctro.2023.100681
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Davey A;Pan S;Bryce-Atkinson A;Mandeville H;Janssens GO;Kelly SM;Hol M;Tang V;Davies LSC;Siop-Europe Radiation Oncology Working Group;Aznar M
  • 通讯作者:
    Aznar M
Outcomes of Patients Treated in the UK Proton Overseas Programme: Central Nervous System Group
  • DOI:
    10.1016/j.clon.2023.01.024
  • 发表时间:
    2023-04-07
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Gaito, S.;Hwang, E. J.;Smith, E.
  • 通讯作者:
    Smith, E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marianne Aznar其他文献

Reducing radiation to the heart in breast cancer: is that all that matters?
减少乳腺癌患者心脏的辐射:这就是最重要的吗?
  • DOI:
    10.1093/eurheartj/ehad528
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    39.3
  • 作者:
    Marianne Aznar;A. Nohria
  • 通讯作者:
    A. Nohria
Identifying paediatric patients at risk of severe hearing impairment after treatment for malignancies of the H&N/CNS with proton therapy
  • DOI:
    10.1016/j.radonc.2024.110597
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Simona Gaito;Eunji Hwang;David Thwaites;Verity Ahern;Ed Smith;Gillian A. Whitfield;Peter Sitch;Anna France;Marianne Aznar
  • 通讯作者:
    Marianne Aznar
Voxel-based analysis: Roadmap for clinical translation
基于体素的分析:临床转化路线图
  • DOI:
    10.1016/j.radonc.2023.109868
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Alan McWilliam;Giuseppe Palma;Azadeh Abravan;Oscar Acosta;Ane Appelt;Marianne Aznar;Serena Monti;Eva Onjukka;Vanessa Panettieri;Lorenzo Placidi;Tiziana Rancati;Eliana Vasquez Osorio;Marnix Witte;Laura Cella
  • 通讯作者:
    Laura Cella
TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods
TRIPOD AI 声明:使用回归或机器学习方法报告临床预测模型的更新指南
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gary S. Collins;K. Moons;Paula Dhiman;Richard D. Riley;A. L. Beam;B. Calster;Marzyeh Ghassemi;Xiaoxuan Liu;Johannes B Reitsma;M. Smeden;A. Boulesteix;Jennifer Catherine Camaradou;L. Celi;S. Denaxas;A. Denniston;Ben Glocker;Robert M Golub;Hugh Harvey;Georg Heinze;Michael M Hoffman;A. Kengne;Emily Lam;Naomi Lee;Elizabeth W Loder;Lena Maier;B. Mateen;M. Mccradden;Lauren Oakden;Johan Ordish;Richard Parnell;Sherri Rose;Karandeep Singh;L. Wynants;P. Logullo;Abhishek Gupta;Adrian Barnett;Adrian Jonas;Agathe Truchot;Aiden Doherty;Alan Fraser;Alex Fowler;Alex Garaiman;Alistair Denniston;Amin Adibi;André Carrington;Andre Esteva;Andrew Althouse;Andrew Soltan;A. Appelt;Ari Ercole;Armando Bedoya;B. Vasey;B. Desiraju;Barbara Seeliger;B. Geerts;Beatrice Panico;Benjamin Fine;Benjamin Goldstein;B. Gravesteijn;Benjamin Wissel;B. Holzhauer;Boris Janssen;Boyi Guo;Brooke Levis;Catey Bunce;Charles Kahn;Chris Tomlinson;Christopher Kelly;Christopher Lovejoy;Clare McGenity;Conrad Harrison Constanza;Andaur Navarro;D. Nieboer;Dan Adler;Danial Bahudin;Daniel Stahl;Daniel Yoo;Danilo Bzdok;Darren Dahly;D. Treanor;David Higgins;David McClernon;David Pasquier;David Taylor;Declan O’Regan;Emily Bebbington;Erik Ranschaert;E. Kanoulas;Facundo Diaz;Felipe Kitamura;Flavio Clesio;Floor van Leeuwen;Frank Harrell;Frank Rademakers;G. Varoquaux;Garrett S Bullock;Gary Weissman;George Fowler;George Kostopoulos;Georgios Lyratzaopoulos;Gianluca Di;Gianluca Pellino;Girish Kulkarni;G. Zoccai;Glen Martin;Gregg Gascon;Harlan Krumholz;H. Sufriyana;Hongqiu Gu;H. Bogunović;Hui Jin;Ian Scott;Ijeoma Uchegbu;Indra Joshi;Irene M. Stratton;James Glasbey;Jamie Miles;Jamie Sergeant;Jan Roth;Jared Wohlgemut;Javier Carmona Sanz;J. Bibault;Jeremy Cohen;Ji Eun Park;Jie Ma;Joel Amoussou;John Pickering;J. Ensor;J. Flores;Joseph LeMoine;Joshua Bridge;Josip Car;Junfeng Wang;Keegan Korthauer;Kelly Reeve;L. Ación;Laura J. Bonnett;Lief Pagalan;L. Buturovic;L. Hooft;Maarten Luke Farrow;Van Smeden;Marianne Aznar;Mario Doria;Mark Gilthorpe;M. Sendak;M. Fabregate;M. Sperrin;Matthew Strother;Mattia Prosperi;Menelaos Konstantinidis;Merel Huisman;Michael O. Harhay;Miguel Angel Luque;M. Mansournia;Munya Dimairo;Musa Abdulkareem;M. Nagendran;Niels Peek;Nigam Shah;Nikolas Pontikos;N. Noor;Oilivier Groot;Páll Jónsson;Patrick Bossuyt;Patrick Lyons;Patrick Omoumi;Paul Tiffin;Peter Austin;Q. Noirhomme;Rachel Kuo;Ram Bajpal;Ravi Aggarwal;Richiardi Jonas;Robert Platt;Rohit Singla;Roi Anteby;Rupa Sakar;Safoora Masoumi;Sara Khalid;Saskia Haitjema;Seong Park;Shravya Shetty;Stacey Fisher;Stephanie Hicks;Susan Shelmerdine;Tammy Clifford;Tatyana Shamliyan;Teus Kappen;Tim Leiner;Tim Liu;Tim Ramsay;Toni Martinez;Uri Shalit;Valentijn de Jong;Valentyn Bezshapkin;V. Cheplygina;Victor Castro;V. Sounderajah;Vineet Kamal;V. Harish;Wim Weber;W. Amsterdam;Xioaxuan Liu;Zachary Cohen;Zakia Salod;Zane Perkins
  • 通讯作者:
    Zane Perkins
1317 A comparative analysis of the dosimetric benefits of the library of plans and daily online adaptation on MRLinac for cervical cancer
1317 对计划库的剂量学优势以及磁共振直线加速器(MRLinac)上针对宫颈癌的每日在线自适应的比较分析
  • DOI:
    10.1016/s0167-8140(25)00387-1
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    5.300
  • 作者:
    Amerah Alshamrani;Robert Chuter;Frank Brewster;Marianne Aznar;Peter Hoskin;Claire Nelder;Ananya Choudhury;Cynthia L. Eccles
  • 通讯作者:
    Cynthia L. Eccles

Marianne Aznar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于高频信息下高维波动率矩阵估计及应用
  • 批准号:
    71901118
  • 批准年份:
    2019
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
半参数空间自回归面板模型的有效估计与应用研究
  • 批准号:
    71961011
  • 批准年份:
    2019
  • 资助金额:
    16.0 万元
  • 项目类别:
    地区科学基金项目
高频数据波动率统计推断、预测与应用
  • 批准号:
    71971118
  • 批准年份:
    2019
  • 资助金额:
    50.0 万元
  • 项目类别:
    面上项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
  • 批准号:
    61502059
  • 批准年份:
    2015
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于Linked Open Data的Web服务语义互操作关键技术
  • 批准号:
    61373035
  • 批准年份:
    2013
  • 资助金额:
    77.0 万元
  • 项目类别:
    面上项目
体数据表达与绘制的新方法研究
  • 批准号:
    61170206
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
一类新Regime-Switching模型及其在金融建模中的应用研究
  • 批准号:
    11061041
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Accessing and Expanding Natural Products Chemical Diversity by Big-data Analysis and Biosynthetic Investigation
通过大数据分析和生物合成研究获取和扩大天然产物化学多样性
  • 批准号:
    10714466
  • 财政年份:
    2023
  • 资助金额:
    $ 152.37万
  • 项目类别:
III: Small: A Big Data and Machine Learning Approach for Improving the Efficiency of Two-sided Online Labor Markets
III:小:提高双边在线劳动力市场效率的大数据和机器学习方法
  • 批准号:
    2311582
  • 财政年份:
    2023
  • 资助金额:
    $ 152.37万
  • 项目类别:
    Standard Grant
CAREER: Small Data in a Big World: Balancing Interpretability and Generalizability for Data Integration in Clinical Neuroscience
职业:大世界中的小数据:平衡临床神经科学数据集成的可解释性和概括性
  • 批准号:
    2322823
  • 财政年份:
    2023
  • 资助金额:
    $ 152.37万
  • 项目类别:
    Continuing Grant
Big data apprOaches fOr Safe Therapeutics in Healthy Pregnancies (BOOST-HP)
健康妊娠安全治疗的大数据方法 (BOOST-HP)
  • 批准号:
    10539666
  • 财政年份:
    2022
  • 资助金额:
    $ 152.37万
  • 项目类别:
Discrete and/or Longitudinal Data (small/big) analysis and The Behrens-Fisher problem
离散和/或纵向数据(小/大)分析和 Behrens-Fisher 问题
  • 批准号:
    RGPIN-2018-04558
  • 财政年份:
    2022
  • 资助金额:
    $ 152.37万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: RI: Small: Robust Deep Learning with Big Imbalanced Data
合作研究:RI:小型:具有大不平衡数据的鲁棒深度学习
  • 批准号:
    2246756
  • 财政年份:
    2022
  • 资助金额:
    $ 152.37万
  • 项目类别:
    Continuing Grant
Development of a method for comprehensively analyzing the interaction between RNA and small molecule and analysis on big data of the RNA-small molecule binding pairs
建立RNA与小分子相互作用综合分析方法及RNA-小分子结合对大数据分析
  • 批准号:
    21H02079
  • 财政年份:
    2021
  • 资助金额:
    $ 152.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Translating Genetic Risk Factors to Therapies: From Big Data to Druggable Targets
将遗传风险因素转化为治疗方法:从大数据到可药物靶点
  • 批准号:
    10318416
  • 财政年份:
    2021
  • 资助金额:
    $ 152.37万
  • 项目类别:
CIF: Small: Statistically Optimal Subsampling for Big Data and Rare Events Data
CIF:小:大数据和稀有事件数据的统计最佳子采样
  • 批准号:
    2105571
  • 财政年份:
    2021
  • 资助金额:
    $ 152.37万
  • 项目类别:
    Standard Grant
Translating Genetic Risk Factors to Therapies: From Big Data to Druggable Targets
将遗传风险因素转化为治疗方法:从大数据到可药物靶点
  • 批准号:
    10668535
  • 财政年份:
    2021
  • 资助金额:
    $ 152.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了