Synthesis and Structure Elucidation of Natural Products

天然产物的合成和结构解析

基本信息

  • 批准号:
    EP/T033584/1
  • 负责人:
  • 金额:
    $ 194.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

In this project we will aim to automate the preparation of chemical compounds called polyketides, so that a robot can be programmed to make an entire library of polyketide compounds with little or no human intervention. Because this project will allow us to access dozens or hundreds of polyketides in a short space of time, we will also be developing very fast computational tools based on quantum mechanics and machine learning to design polyketides and then analyse them once they are made.Polyketides are a class of naturally occurring chemicals that comprise around 20% of the current top-selling drugs, including antibiotics, antifungals and anti-tumour agents. As such they are crucially important to human health and preparation of them (a process called "chemical synthesis") has been one of the major successes of the 20th century. However, the structures of these molecules can be extremely complex - and their chemical synthesis is incredibly challenging, in fact the synthesis of each polyketide is a separate, bespoke scientific investigation taking months, years or decades of work to complete. Even when they are made, their complexity makes the study of their structures and behaviours another challenging task - for example if we wish to understand their 3-dimensional structure and motion, then we often have to rely on demanding quantum chemical calculations that require days/weeks/months of high-end computing time to undertake. All of this contrasts with other important naturally occurring molecules, such as peptides (which make up the proteins in the body) or DNA. For these molecules, the chemical synthesis is now totally routine and can be fully automated - the scientist simply dials-up the compound they want and the robot can construct it from simple, readily available building blocks. We want to make the incredibly valuable polyketide class of compounds just as accessible.We have developed methodology for making the components of polyketides and now seek to automate their assembly on our newly acquired Chemspeed Automated Platform - a robotic chemical synthesis instrument. Through combining different building blocks on the robot, a diverse set of complex polyketides can be rapidly accessed, which in turn will enable biological studies to see if how the structure affects the biological activity. The downside of making so many new, complex chemical compounds, is then the bottle-neck created in designing or analysing the structures of the molecules we would like to make - in particular their three-dimensional structures. Our current state-of-the-art quantum chemical approaches to this are very slow (but incredibly accurate) and will simply not be able to keep up. So we propose to build on our recent development of an ultra-fast machine learning system that can mimic quantum chemical calculations, but in milliseconds rather than days or months. The robotic syntheses and resulting compounds that we make will allow us to develop and test more accurate quantum chemical methods and then use these to massively improve our machine learning system so that it is good enough to rapidly screen the hundreds or even thousands of potential structures that we might synthesise. With both the automated synthesis robot to make polyketides and the machine learning system that lets us design and study these compounds we ultimately aim to render polyketide synthesis as easy as peptide and DNA synthesis - revolutionising the way that these molecules are developed.
在这个项目中,我们的目标是自动化制备被称为聚酮化合物的化合物,这样机器人就可以被编程来制造整个聚酮化合物库,而很少或根本没有人为干预。由于该项目将使我们能够在短时间内获得数十种或数百种聚酮化合物,我们还将开发基于量子力学和机器学习的快速计算工具,以设计聚酮化合物,然后在制造后对其进行分析。聚酮化合物是一类天然存在的化学物质,约占当前最畅销药物的20%,包括抗生素,抗真菌和抗肿瘤药物。因此,它们对人类健康至关重要,并且它们的制备(称为“化学合成”的过程)是世纪的主要成功之一。然而,这些分子的结构可能非常复杂-它们的化学合成具有令人难以置信的挑战性,事实上,每个聚酮化合物的合成是一个单独的,定制的科学研究,需要数月,数年或数十年的工作才能完成。即使它们被制造出来,它们的复杂性也使得研究它们的结构和行为成为另一项具有挑战性的任务-例如,如果我们希望了解它们的三维结构和运动,那么我们通常不得不依赖于要求苛刻的量子化学计算,需要数天/数周/数月的高端计算时间来进行。所有这些都与其他重要的天然分子形成对比,如肽(构成体内蛋白质)或DNA。对于这些分子,化学合成现在完全是常规的,可以完全自动化-科学家只需拨号他们想要的化合物,机器人就可以从简单,现成的构建模块构建它。我们希望使极具价值的聚酮化合物类变得易于获得。我们已经开发出了制造聚酮化合物组分的方法,现在正在寻求在我们新收购的Chemspeed自动化平台上自动组装它们-机器人化学合成仪器。通过在机器人上组合不同的构建模块,可以快速访问各种复杂的聚酮化合物,这反过来将使生物学研究能够了解结构如何影响生物活性。制造如此多新的复杂化合物的缺点是,在设计或分析我们想要制造的分子结构时产生了瓶颈-特别是它们的三维结构。我们目前最先进的量子化学方法非常缓慢(但非常准确),根本无法跟上。因此,我们建议建立在我们最近开发的超快速机器学习系统的基础上,该系统可以模拟量子化学计算,但只需几毫秒,而不是几天或几个月。我们制造的机器人合成和由此产生的化合物将使我们能够开发和测试更准确的量子化学方法,然后使用这些方法来大规模改进我们的机器学习系统,以便它足以快速筛选我们可能合成的数百甚至数千种潜在结构。通过自动化合成机器人来制造聚酮化合物,以及让我们设计和研究这些化合物的机器学习系统,我们的最终目标是使聚酮化合物的合成像肽和DNA合成一样简单-彻底改变这些分子的开发方式。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lithiation-borylation methodology in the total synthesis of natural products
  • DOI:
    10.1038/s44160-021-00012-1
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yeung, Kay;Mykura, Rory C.;Aggarwal, Varinder K.
  • 通讯作者:
    Aggarwal, Varinder K.
Automated stereocontrolled assembly-line synthesis of organic molecules
  • DOI:
    10.1038/s44160-022-00158-6
  • 发表时间:
    2022-11-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fasano, Valerio;Mykura, Rory C.;Aggarwal, Varinder K.
  • 通讯作者:
    Aggarwal, Varinder K.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Varinder Aggarwal其他文献

Varinder Aggarwal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Varinder Aggarwal', 18)}}的其他基金

Conformation, Automation and Applications of Polyborons in Synthesis
聚硼的构象、自动化及其在合成中的应用
  • 批准号:
    EP/Y028015/1
  • 财政年份:
    2023
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Research Grant
Modular approach to structurally diverse four-membered (spiro)cycles using highly strained precursors
使用高应变前体构建结构多样的四元(螺)环的模块化方法
  • 批准号:
    EP/S017801/1
  • 财政年份:
    2019
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Research Grant
Automating the Synthetic Chemistry Landscape in Bristol: Accelerating Impact and Application
布里斯托尔合成化学景观自动化:加速影响和应用
  • 批准号:
    EP/R008795/1
  • 财政年份:
    2017
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Research Grant
Merging Photoredox with 1,2-Boronate Rearrangements: New Opportunities for Rapid Increase in Molecular Complexity
将光氧化还原与 1,2-硼酸酯重排相结合:分子复杂性快速增加的新机遇
  • 批准号:
    EP/R004978/1
  • 财政年份:
    2017
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Research Grant
Synthesis and Biology of Prostanoids
前列腺素的合成和生物学
  • 批准号:
    EP/M012530/1
  • 财政年份:
    2015
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Research Grant
Changing the Synthesis Landscape with Boron at the Helm: from Chiral Organometallics to Assembly Line Synthesis
以硼为主导改变合成格局:从手性有机金属到流水线合成
  • 批准号:
    EP/I038071/1
  • 财政年份:
    2012
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Research Grant
General and Convergent Strategy for Asymmetric Synthesis
不对称合成的通用和收敛策略
  • 批准号:
    EP/E052185/1
  • 财政年份:
    2007
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Fellowship

相似海外基金

Synthesis of beta-glucan mimic polymers and elucidation of the molecular structure required for the immunological activation
β-葡聚糖模拟聚合物的合成和免疫激活所需分子结构的阐明
  • 批准号:
    20K05602
  • 财政年份:
    2020
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of growth mechanism and local structure of anatase titanium oxide single crystal thin film by hydrothermal synthesis
水热合成法阐明锐钛矿型氧化钛单晶薄膜的生长机理和局部结构
  • 批准号:
    20K05323
  • 财政年份:
    2020
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Polysilicides and their Transition Metal Complexes: Synthesis and Structure Elucidation in Liquid Ammonia and in Solid Ammoniates
聚硅化物及其过渡金属配合物:液氨和固体氨中的合成和结构解析
  • 批准号:
    388504559
  • 财政年份:
    2017
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Research Grants
Synthesis and Structure Elucidation of Tedanolide C
Tedanolide C 的合成及结构解析
  • 批准号:
    397946801
  • 财政年份:
    2017
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Research Grants
Synthesis, Structure Elucidation, and Physical Properties of Naked Guanidinates of Europium and Ytterbium
铕镱裸胍盐的合成、结构解析和物理性质
  • 批准号:
    320752186
  • 财政年份:
    2016
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Research Grants
SusChEM: Synthesis and Structure-Property Elucidation of Direct-Bandgap Group IV Alloy Nanocrystals for Optoelectronic Applications
SusChEM:用于光电应用的直接带隙 IV 族合金纳米晶体的合成和结构性能阐明
  • 批准号:
    1506595
  • 财政年份:
    2015
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Standard Grant
Synthesis of isotopically labelled terpene precursors for structure elucidation of terpenes and investigation of mechanistic aspects of their biosynthesis
合成同位素标记的萜烯前体,用于萜烯的结构阐明及其生物合成的机制方面的研究
  • 批准号:
    271721844
  • 财政年份:
    2015
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Research Grants
isolation, structure elucidation and synthesis of biologically active marine natural products
具有生物活性的海洋天然产物的分离、结构解析和合成
  • 批准号:
    869-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Discovery Grants Program - Individual
isolation, structure elucidation and synthesis of biologically active marine natural products
具有生物活性的海洋天然产物的分离、结构解析和合成
  • 批准号:
    869-2008
  • 财政年份:
    2011
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Discovery Grants Program - Individual
Stereoselective Synthesis of Bioactive Alkaloids for Structure Elucidation and Drug Discovery
用于结构阐明和药物发现的生物活性生物碱的立体选择性合成
  • 批准号:
    DP1094518
  • 财政年份:
    2010
  • 资助金额:
    $ 194.45万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了