Spatiotemporal statistical machine learning (ST-SML): theory, methods, and applications

时空统计机器学习 (ST-SML):理论、方法和应用

基本信息

  • 批准号:
    EP/V002910/2
  • 负责人:
  • 金额:
    $ 149.81万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Machine learning (ML) is the computational beating heart of the modern Artificial Intelligence (AI) renaissance. A number of fields, from computer vision to speech recognition have been completely transformed by the successes of machine learning. But practitioners and policymakers struggle when it comes to translating the successes of ML from narrowly defined prediction problems---e.g. "is this a picture of a cat?"---to the broader and messier world of public health and public policy. This fellowship will fund research on new ML methods to enable us to better ask and answer questions concerning change over space and time, such as: 1) How does disease risk, poverty, or housing quality vary within a country and over time?2) Can satellite data enable us to answer policy questions in a more timely and spatially localised manner?3) Do the dynamics of violent crime differ in different cities?4) Did the world achieve the Millennium Development Goals? Will the world achieve the Sustainable Development Goals?Bespoke answers to these questions are not enough, because practitioners in the public sector face new challenges in real-time. They need reproducible and well-documented applied workflows to follow to enable them to tackle important public policy problems as they arise.
机器学习(ML)是现代人工智能(AI)复兴的计算心脏。机器学习的成功彻底改变了从计算机视觉到语音识别的许多领域。但是从业者和政策制定者在将ML的成功从狭义的预测问题中转化出来时会遇到困难-例如,“这是一张猫的照片吗?”“-到更广阔、更混乱的公共卫生和公共政策领域。该奖学金将资助新的ML方法的研究,使我们能够更好地询问和回答有关空间和时间变化的问题,例如:1)疾病风险,贫困或住房质量在一个国家内和随着时间的推移如何变化?2)卫星数据能否使我们能够以更及时和空间局部化的方式回答政策问题?3)不同城市的暴力犯罪动态是否不同?4)世界是否实现了千年发展目标?世界能否实现可持续发展目标?这些问题的定制答案是不够的,因为公共部门的从业人员面临着实时的新挑战。他们需要可复制和记录良好的应用工作流程,以使他们能够在出现重要的公共政策问题时加以解决。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Reauthorise PEPFAR to prevent death, orphanhood, and suffering for millions of children.
重新授权总统防治艾滋病紧急救援计划(PEPFAR),以防止数百万儿童死亡、成为孤儿和遭受痛苦。
  • DOI:
    10.1016/s0140-6736(23)01723-3
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cluver L
  • 通讯作者:
    Cluver L
Genomic characterization and epidemiology of an emerging SARS-CoV-2 variant in Delhi, India.
  • DOI:
    10.1126/science.abj9932
  • 发表时间:
    2021-11-19
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dhar MS;Marwal R;Vs R;Ponnusamy K;Jolly B;Bhoyar RC;Sardana V;Naushin S;Rophina M;Mellan TA;Mishra S;Whittaker C;Fatihi S;Datta M;Singh P;Sharma U;Ujjainiya R;Bhatheja N;Divakar MK;Singh MK;Imran M;Senthivel V;Maurya R;Jha N;Mehta P;A V;Sharma P;Vr A;Chaudhary U;Soni N;Thukral L;Flaxman S;Bhatt S;Pandey R;Dash D;Faruq M;Lall H;Gogia H;Madan P;Kulkarni S;Chauhan H;Sengupta S;Kabra S;Indian SARS-CoV-2 Genomics Consortium (INSACOG)‡;Gupta RK;Singh SK;Agrawal A;Rakshit P;Nandicoori V;Tallapaka KB;Sowpati DT;Thangaraj K;Bashyam MD;Dalal A;Sivasubbu S;Scaria V;Parida A;Raghav SK;Prasad P;Sarin A;Mayor S;Ramakrishnan U;Palakodeti D;Seshasayee ASN;Bhat M;Shouche Y;Pillai A;Dikid T;Das S;Maitra A;Chinnaswamy S;Biswas NK;Desai AS;Pattabiraman C;Manjunatha MV;Mani RS;Arunachal Udupi G;Abraham P;Atul PV;Cherian SS
  • 通讯作者:
    Cherian SS
Spatial and temporal fluctuations in COVID-19 fatality rates in Brazilian hospitals.
  • DOI:
    10.1038/s41591-022-01807-1
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    82.9
  • 作者:
    Brizzi, Andrea;Whittaker, Charles;Servo, Luciana M. S.;Hawryluk, Iwona;Prete Jr, Carlos A.;de Souza, William M.;Aguiar, Renato S.;Araujo, Leonardo J. T.;Bastos, Leonardo S.;Blenkinsop, Alexandra;Buss, Lewis F.;Candido, Darlan;Castro, Marcia C.;Costa, Silvia F.;Croda, Julio;de Souza Santos, Andreza Aruska;Dye, Christopher;Flaxman, Seth;Fonseca, Paula L. C.;Geddes, Victor E. V.;Gutierrez, Bernardo;Lemey, Philippe;Levin, Anna S.;Mellan, Thomas;Bonfim, Diego M.;Miscouridou, Xenia;Mishra, Swapnil;Monod, Melodie;Moreira, Filipe R. R.;Nelson, Bruce;Pereira, Rafael H. M.;Ranzani, Otavio;Schnekenberg, Ricardo P.;Semenova, Elizaveta;Sonnabend, Raphael;Souza, Renan P.;Xi, Xiaoyue;Sabino, Ester C.;Faria, Nuno R.;Bhatt, Samir;Ratmann, Oliver
  • 通讯作者:
    Ratmann, Oliver
Seq2Seq Surrogates of Epidemic Models to Facilitate Bayesian Inference
流行病模型的 Seq2Seq 替代品促进贝叶斯推理
Improving axial resolution in Structured Illumination Microscopy using deep learning.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Seth Flaxman其他文献

Exploring the potential and limitations of deep learning and explainable AI for longitudinal life course analysis
  • DOI:
    10.1186/s12889-025-22705-4
  • 发表时间:
    2025-04-24
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Helen Coupland;Neil Scheidwasser;Alexandros Katsiferis;Megan Davies;Seth Flaxman;Naja Hulvej Rod;Swapnil Mishra;Samir Bhatt;H. Juliette T. Unwin
  • 通讯作者:
    H. Juliette T. Unwin
National, regional, and global trends in insufficient physical activity among adults from 2000 to 2022: a pooled analysis of 507 population-based surveys with 5·7 million participants.
2000 年至 2022 年成人身体活动不足的国家、区域和全球趋势:对 5·700 万参与者的 507 项人口调查的汇总分析。
  • DOI:
    10.1016/s2214-109x(24)00150-5
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    34.3
  • 作者:
    Tessa Strain;Seth Flaxman;R. Guthold;Elizaveta Semenova;Melanie J. Cowan;L. Riley;Fiona C Bull;Gretchen A Stevens
  • 通讯作者:
    Gretchen A Stevens
Trends in Pediatric Hospital Admissions Caused or Contributed by SARS-CoV-2 Infection in England
  • DOI:
    10.1016/j.jpeds.2024.114370
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Harrison Wilde;Christopher Tomlinson;Bilal A. Mateen;David Selby;Hari Krishnan Kanthimathinathan;Spiros Denaxas;Seth Flaxman;Sebastian Vollmer;Christina Pagel;Katherine Brown; CVD-COVID-UK/COVID-IMPACT Consortium
  • 通讯作者:
    CVD-COVID-UK/COVID-IMPACT Consortium
大全画面大腸内視鏡画像に適したリアルタイム特徴量抽出のFPGA実装
适用于大屏幕结肠镜图像的实时特征提取的FPGA实现
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ho Chung Law;Dino Sejdinovic;Ewan Cameron;Tim Lucas;Seth Flaxman;Katherine Battle;Kenji Fukumizu;Takashi Sato and Hidetoshi Onodera;清水 達也,小出 哲士,杉幸樹,岡本 拓巳,Anh-Tuan Hoang,玉木 徹,Bisser Raytchev,金田 正文,吉田 成人,三重野 寛,田中 信治
  • 通讯作者:
    清水 達也,小出 哲士,杉幸樹,岡本 拓巳,Anh-Tuan Hoang,玉木 徹,Bisser Raytchev,金田 正文,吉田 成人,三重野 寛,田中 信治
Protecting Africa's children from extreme risk: a runway of sustainability for PEPFAR programmes
保护非洲儿童免受极端风险:美国“总统防治艾滋病紧急救援计划”(PEPFAR)项目的可持续发展之路
  • DOI:
    10.1016/s0140-6736(25)00401-5
  • 发表时间:
    2025-05-10
  • 期刊:
  • 影响因子:
    88.500
  • 作者:
    Lucie Cluver;Gibstar Makangila;Susan Hillis;Joel-Pascal Ntwali-N'Konzi;Seth Flaxman;Juliette Unwin;Jeffrey W Imai-Eaton;Vuyelwa Chtimbire;Lorraine Sherr;Jane Ng'ang'a;Chris Desmond;Elona Toska;Olayinka Omigbodun;Oliver Ratmann;Galen Carey;Mary Mahy;Brian Honermann;John Stover
  • 通讯作者:
    John Stover

Seth Flaxman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Seth Flaxman', 18)}}的其他基金

Spatiotemporal statistical machine learning (ST-SML): theory, methods, and applications
时空统计机器学习 (ST-SML):理论、方法和应用
  • 批准号:
    EP/V002910/1
  • 财政年份:
    2020
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Fellowship

相似国自然基金

基于随机网络演算的无线机会调度算法研究
  • 批准号:
    60702009
  • 批准年份:
    2007
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
  • 批准号:
    2334261
  • 财政年份:
    2023
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
  • 批准号:
    2244160
  • 财政年份:
    2023
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Standard Grant
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
  • 批准号:
    495410
  • 财政年份:
    2023
  • 资助金额:
    $ 149.81万
  • 项目类别:
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886365
  • 财政年份:
    2023
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886852
  • 财政年份:
    2023
  • 资助金额:
    $ 149.81万
  • 项目类别:
    Studentship
Deconstructing the sertonin system in the mouse brain
解构小鼠大脑中的血清素系统
  • 批准号:
    10656870
  • 财政年份:
    2023
  • 资助金额:
    $ 149.81万
  • 项目类别:
Integrative Data Science Approach to Advance Care Coordination of ADRD by Primary Care Providers
综合数据科学方法促进初级保健提供者对 ADRD 的护理协调
  • 批准号:
    10722568
  • 财政年份:
    2023
  • 资助金额:
    $ 149.81万
  • 项目类别:
Whole genome sequence interpretation for lipids to discover new genes and mechanisms for coronary artery disease
脂质的全基因组序列解释,以发现冠状动脉疾病的新基因和机制
  • 批准号:
    10722515
  • 财政年份:
    2023
  • 资助金额:
    $ 149.81万
  • 项目类别:
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
  • 批准号:
    10714930
  • 财政年份:
    2023
  • 资助金额:
    $ 149.81万
  • 项目类别:
Multi-modal insights of spatially distributed cells with associations of diseases and drug response
空间分布细胞与疾病和药物反应关联的多模式见解
  • 批准号:
    10714602
  • 财政年份:
    2023
  • 资助金额:
    $ 149.81万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了