Near-Field Optical Spectroscopy Centre at Sheffield, NOSC

NOSC 谢菲尔德近场光谱中心

基本信息

  • 批准号:
    EP/V007696/1
  • 负责人:
  • 金额:
    $ 211.07万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

The function of many new materials that drive innovation and even the function of the living micro-systems such as bacteria is defined by their nanoscale properties such as the local chemical composition, ability to transfer and dissipate energy and electrical charge, local crystal structure and nanometre-sized defects, ability to scatter and trap light, or to induce chemical reactions through catalysis and many more. Understanding how we can prolong the life-time of devices, for example a battery cathode or a solar cell, can also be gained from understanding of how the material in the device changes on the nanoscale during its operation. It has long been a drive to develop technical means that allow to 'see' with nanometer resolution, an impossible task if conventional 'far-field' optical microscopy is used, because of the diffraction limit. The optical diffraction limit can be overcome if high energy electrons are used instead of light, but such electron microscopy may be damaging for the studied materials and nano-structures and quite often requires special sample preparation. Truly non-invasive techniques relying on weak optical probes are therefore highly desirable, and have now become available in state-of-the-art experimental instruments. In this project, we will establish a research facility based on such an instrument, which provides a unique suite of novel optical techniques capable of 10 nm spatial resolution, 50 to 1000 times below the optical diffraction limit. The techniques are based on the light focusing with a very sharp tip, used in atomic force microscopy (AFM). Such techniques will operate in conjunction with the powerful nanoscale investigation method provided by AFM. The facility will provide this experimental platform for the world-leading research at the University of Sheffield and the UK scientific community as a whole in topics including artificial photosynthesis, antimicrobial resistance, inorganic and organic semiconductors, quantum and bioinspired nano-photonics, two-dimensional materials, solar cells, photocatalysis and nano-materials for solid state batteries among many others. Common to all these fields is the challenge of mapping structural, chemical and functional properties with nanoscale resolution; a challenge that prevents further breakthroughs in understanding and innovation in the technology areas that are vital to the UK's interests, and which we will address within the proposed nano-spectroscopy facility.
许多新材料的功能,这些新材料驱动创新,甚至是生物微系统(例如细菌)的功能,其纳米级特性(例如局部化学成分,能够传递和消散能量和电荷的能力),局部晶体结构以及纳米尺寸的缺陷,能够散射和诱导化学反应以及通过猫科学诱导化学反应以及更多的更多。了解我们如何延长设备的寿命,例如电池阴极或太阳能电池,也可以从了解纳米级操作过程中设备中的材料如何变化。长期以来,这是开发技术手段的动力,可以通过纳米分辨率“看到”,如果使用常规的“远场”光学显微镜,则是不可能的任务,这是由于衍射限制的。如果使用高能电子代替光,可以克服光学衍射极限,但是对于所研究的材料和纳米结构,这种电子显微镜可能会损害,并且经常需要特殊的样品制备。因此,真正依赖弱光学探针的真正非侵入性技术是非常可取的,现在已在最新的实验仪器中获得。在这个项目中,我们将基于这种仪器建立一个研究设施,该工具提供了一套独特的新型光学技术,能够以10 nm的空间分辨率,低于光学衍射极限50至1000倍。这些技术基于光聚焦,其尖端非常尖,用于原子力显微镜(AFM)。这种技术将与AFM提供的强大纳米级调查方法结合使用。 The facility will provide this experimental platform for the world-leading research at the University of Sheffield and the UK scientific community as a whole in topics including artificial photosynthesis, antimicrobial resistance, inorganic and organic semiconductors, quantum and bioinspired nano-photonics, two-dimensional materials, solar cells, photocatalysis and nano-materials for solid state batteries among many others.所有这些领域的共同点是绘制结构,化学和功能特性并分辨率的挑战。这项挑战阻止了对英国利益至关重要的技术领域的理解和创新的进一步突破,我们将在拟议的纳米镜镜设施中解决。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Highly efficient carbon dot-based photoinitiating systems for 3D-VAT printing
  • DOI:
    10.1039/d3py00726j
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Dominika Krok;Wiktoria Tomal;Alexander J. Knight;A. Tartakovskii;Nicholas T. H. Farr;W. Kasprzyk;J. Ortyl
  • 通讯作者:
    Dominika Krok;Wiktoria Tomal;Alexander J. Knight;A. Tartakovskii;Nicholas T. H. Farr;W. Kasprzyk;J. Ortyl
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Tartakovskii其他文献

Alexander Tartakovskii的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Tartakovskii', 18)}}的其他基金

EPSRC Core Capital 2022, Nanomaterials Characterisation Suite (NCS)
EPSRC Core Capital 2022,纳米材料表征套件 (NCS)
  • 批准号:
    EP/X03500X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 211.07万
  • 项目类别:
    Research Grant
TWIST-NANOSPEC: Development of Advanced Optical Nano-spectroscopy Techniques for Twistronics
TWIST-NANOSPEC:开发用于 Twistronics 的先进光学纳米光谱技术
  • 批准号:
    EP/X02153X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 211.07万
  • 项目类别:
    Fellowship
Quantum Materials by Twistronics
Twistronics 的量子材料
  • 批准号:
    EP/V006975/1
  • 财政年份:
    2021
  • 资助金额:
    $ 211.07万
  • 项目类别:
    Research Grant
Light-matter interactions and quantum photonics in nano-scale semiconductor structures and devices
纳米级半导体结构和器件中的光与物质相互作用和量子光子学
  • 批准号:
    EP/S030751/1
  • 财政年份:
    2020
  • 资助金额:
    $ 211.07万
  • 项目类别:
    Research Grant
Microcavity polaritons in atomically thin semiconductors and heterostructures: many-body and nonlinear phenomena
原子薄半导体和异质结构中的微腔极化子:多体和非线性现象
  • 批准号:
    EP/P026850/1
  • 财政年份:
    2017
  • 资助金额:
    $ 211.07万
  • 项目类别:
    Research Grant
Two dimensional III-VI semiconductors and graphene-hybrid heterostructures
二维 III-VI 半导体和石墨烯混合异质结构
  • 批准号:
    EP/M012727/1
  • 财政年份:
    2015
  • 资助金额:
    $ 211.07万
  • 项目类别:
    Research Grant

相似国自然基金

基于双光学系统的场地光谱反射率直接比值测量方法研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于双光学系统的场地光谱反射率直接比值测量方法研究
  • 批准号:
    42105139
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
基于在轨交叉成像的敏捷光学卫星无场地几何定标方法
  • 批准号:
    41601492
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
基于太赫兹光谱近场成像技术的应力场测量方法
  • 批准号:
    11572217
  • 批准年份:
    2015
  • 资助金额:
    120.0 万元
  • 项目类别:
    面上项目
利用混合遗传算法从多方位光流场恢复3D运动与结构的研究
  • 批准号:
    60305003
  • 批准年份:
    2003
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

MRI: Acquisition of a Scanning Near-Field Optical Microscope (neaSNOM) with Combined Nano-Infrared/Tip-Enhanced Raman Spectroscopy for Research & Education
MRI:购买扫描近场光学显微镜 (neaSNOM) 并结合纳米红外/尖端增强拉曼光谱进行研究
  • 批准号:
    2216239
  • 财政年份:
    2022
  • 资助金额:
    $ 211.07万
  • 项目类别:
    Standard Grant
Optical near-field study of ferroelectric tunnel junctions
铁电隧道结的光学近场研究
  • 批准号:
    RGPIN-2019-07023
  • 财政年份:
    2022
  • 资助金额:
    $ 211.07万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Rapid Chiral Optical Near-Field Spectroscopy with Forbidden Light Detection
具有禁光检测功能的快速手性光学近场光谱学的发展
  • 批准号:
    21K14594
  • 财政年份:
    2021
  • 资助金额:
    $ 211.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Applications of near-field optical spectroscopy for nano-photonic structures and devices
近场光谱在纳米光子结构和器件中的应用
  • 批准号:
    2619607
  • 财政年份:
    2021
  • 资助金额:
    $ 211.07万
  • 项目类别:
    Studentship
Optical near-field study of ferroelectric tunnel junctions
铁电隧道结的光学近场研究
  • 批准号:
    RGPIN-2019-07023
  • 财政年份:
    2021
  • 资助金额:
    $ 211.07万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了