High performance Wide spectral range Nanoprobe (HiWiN)

高性能宽光谱范围纳米探针 (HiWiN)

基本信息

  • 批准号:
    EP/V00767X/1
  • 负责人:
  • 金额:
    $ 95.05万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

We propose to manufacture and commission the 'High performance Wide spectral range Nanoprobe' (HiWiN) using the tunable FEL electromagnetic (EM) radiation source FELIX (EPSRC National Research Facility at Nijmegen, Netherlands). HiWiN will enable area selective nanoscale (20-50 nm) illumination and/or light detection with high power and high intensity MIR-through-THz FEL radiation. HiWiN merges superior power, time signature and ultra-broad spectral tunability of the FELIX source (3 to 150 um) with selective ultra-high efficiency (20-70%) illumination/detection at the nanoscale. HiWiN has the ability to effectively concentrate the moderate to high power, spectrally selected, FEL EM radiation into a nanoscale-sized spot. This enables investigation of a wide variety of light-matter interaction phenomena (chemical reactions, molecular dissociation, nonlinear response). The project is supported by 31 UK research groups from multiple departments in 12 UK universities and the National Physics Laboratory. It is implemented by the multi-institutional collaboration lead by Lancaster University that is renowned for the development of nanoscale characterisation instrumentation that is now commercially available. HiWiN will be unique and world leading with no comparable capabilities existing in the UK or worldwide.In particular the areas of research advanced by HiWiN will be Quantum Technology and materials where HiWiN will be able to zoom into individual single quantum dots generating THz radiation, to develop digital physical fingerprints to avoid counterfeited medicines, to focus on the special states of materials including two-dimensional materials and topological insulators, and to investigate ultrafast carrier dynamics in RF and THz devices. This research directly contributes to EPSRC growth areas of "Materials for energy applications" and "RF and microwave devices". Another major HiWiN impact area is Catalysis, which is internationally recognised as a critical enabling technology. Power FELs are an essential technology in catalysis allowing spectroscopic observation and initiation of chemical transformations in catalytic processes in real time. The high spatial resolution of HiWiN will provide unprecedented detail on catalytic processes, achieving characterisation of single active catalytic sites, single nanoparticles and enabling new understanding of surface chemical processes and reaction intermediates.In the biomedical sciences, FELs and HiWiN provide the high power and high throughput essential to obtain high quality near field data in the MIR and THz region and this is particularly useful in the study of biological systems, where the functions, such as cell signalling and metabolism which can be targets for pharmaceuticals, are often controlled by submicron surface structures. It will make possible the characterisation of individual bacteria and complex microbial communities; image and characterise nanoparticles relevant to cancer therapies and Alzheimer biochemistry, and to observe nanoscale changes in biomedical monitoring. The combination of high-quality nanoscale imaging with intense THz radiation will open a new window on a detection of diseases and hydration of the cornea, and the interaction of THz radiation with living cells. The biomedical science programme of HiWiN is well aligned with EPSRC's Healthy Nation Strategy and UKRI Roadmap (Biological and biomedical imaging capability). It addresses many of UKRI's priorities supported by the Global Challenges Research Fund and Technology Touching Life programme.We expect HiWiN to become a major platform triggering research in the multiple application areas and stimulating new technological solution in advanced scientific instrumentation.
我们建议使用可调谐 FEL 电磁 (EM) 辐射源 FELIX(位于荷兰奈梅亨的 EPSRC 国家研究设施)制造和调试“高性能宽光谱范围纳米探针”(HiWiN)。 HiWiN 将通过高功率和高强度 MIR 至太赫兹 FEL 辐射实现区域选择性纳米级(20-50 nm)照明和/或光检测。 HiWiN 将 FELIX 光源(3 至 150 um)的卓越功率、时间特征和超宽光谱可调性与纳米级选择性超高效率(20-70%)照明/检测相结合。 HiWiN 能够有效地将中等到高功率、光谱选择的 FEL EM 辐射集中到纳米级大小的光斑中。这使得能够研究各种光-物质相互作用现象(化学反应、分子解离、非线性响应)。该项目得到了来自12所英国大学多个部门的31个英国研究小组和国家物理实验室的支持。它是由兰卡斯特大学领导的多机构合作实施的,兰卡斯特大学以开发纳米级表征仪器而闻名,现已商用。 HiWiN 将是独一无二的、世界领先的,在英国或世界范围内没有可比的能力。特别是 HiWiN 推进的研究领域将是量子技术和材料,其中 HiWiN 将能够放大产生太赫兹辐射的单个单量子点,开发数字物理指纹以避免假冒药物,专注于包括二维材料和拓扑绝缘体在内的材料的特殊状态,并研究超快载流子动力学 射频和太赫兹设备。这项研究直接促进了EPSRC“能源应用材料”和“射频和微波器件”领域的发展。 HiWiN 的另一个主要影响领域是催化,它是国际公认的关键使能技术。 Power FEL 是催化领域的一项重要技术,可以在催化过程中实时进行光谱观察和引发化学转化。 HiWiN 的高空间分辨率将提供有关催化过程的前所未有的细节,实现单个活性催化位点、单个纳米颗粒的表征,并实现对表面化学过程和反应中间体的新理解。在生物医学科学中,FEL 和 HiWiN 提供了获得中红外和太赫兹区域高质量近场数据所必需的高功率和高通量,这在生物系统的研究中特别有用,其中 细胞信号传导和新陈代谢等可作为药物靶标的功能通常由亚微米表面结构控制。它将使得单个细菌和复杂微生物群落的表征成为可能;对与癌症治疗和阿尔茨海默病生物化学相关的纳米颗粒进行成像和表征,并观察生物医学监测中的纳米级变化。高质量纳米级成像与强太赫兹辐射的结合将为检测角膜疾病和水合作用以及太赫兹辐射与活细胞的相互作用打开一扇新的窗口。 HiWiN 的生物医学科学计划与 EPSRC 的健康国家战略和 UKRI 路线图(生物和生物医学成像能力)非常一致。它解决了全球挑战研究基金和科技感动生活计划支持的 UKRI 的许多优先事项。我们期望 HiWiN 成为一个主要平台,引发多个应用领域的研究,并刺激先进科学仪器的新技术解决方案。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Thermal Conductivity of Carbon/Boron Nitride Heteronanotube and Boron Nitride Nanotube Buckypapers: Implications for Thermal Management Composites.
  • DOI:
    10.1021/acsanm.3c01147
  • 发表时间:
    2023-09-08
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Jones, Ruth Sang;Gonzalez-Munoz, Sergio;Griffiths, Ian;Holdway, Philip;Evers, Koen;Luanwuthi, Santamon;Maciejewska, Barbara M.;Kolosov, Oleg;Grobert, Nicole
  • 通讯作者:
    Grobert, Nicole
Nanoarchitecture factors of solid electrolyte interphase formation via 3D nano-rheology microscopy and surface force-distance spectroscopy.
通过3D纳米 - 雷学显微镜和表面力距离光谱法形成固体电解质相间的纳米结构因子。
  • DOI:
    10.1038/s41467-023-37033-7
  • 发表时间:
    2023-03-10
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Chen, Yue;Wu, Wenkai;Gonzalez-Munoz, Sergio;Forcieri, Leonardo;Wells, Charlie;Jarvis, Samuel P.;Wu, Fangling;Young, Robert;Dey, Avishek;Isaacs, Mark;Nagarathinam, Mangayarkarasi;Palgrave, Robert G.;Tapia-Ruiz, Nuria;Kolosov, Oleg V.
  • 通讯作者:
    Kolosov, Oleg V.
Recycling spent lead acid batteries into aqueous zinc-ion battery material with ultra-flat voltage platforms
  • DOI:
    10.1016/j.ceramint.2022.05.253
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Chun Lin;Yue Chen;Weijian Zhang;Jiaxin Li;Yingbin Lin;O. Kolosov;Zhigao Huang
  • 通讯作者:
    Chun Lin;Yue Chen;Weijian Zhang;Jiaxin Li;Yingbin Lin;O. Kolosov;Zhigao Huang
Quantifying the local mechanical properties of twisted double bilayer graphene.
  • DOI:
    10.1039/d3nr00388d
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Alessandra Canetta;S. González-Muñoz;V. Nguyen;K. Agarwal;Pauline de Crombrugghe de Picquendaele-Pauline-de-Crombrugghe-de-Picquendaele-2213065463;Yuanzhuo Hong;S. Mohapatra;Kenji Watanabe;T. Taniguchi;B. Nysten;B. Hackens;R. Ribeiro-Palau;J. Charlier;O. Kolosov;J. Spièce;P. Gehring
  • 通讯作者:
    Alessandra Canetta;S. González-Muñoz;V. Nguyen;K. Agarwal;Pauline de Crombrugghe de Picquendaele-Pauline-de-Crombrugghe-de-Picquendaele-2213065463;Yuanzhuo Hong;S. Mohapatra;Kenji Watanabe;T. Taniguchi;B. Nysten;B. Hackens;R. Ribeiro-Palau;J. Charlier;O. Kolosov;J. Spièce;P. Gehring
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oleg Kolosov其他文献

Cavitation Bubbles Generated by Vibrating Quartz Tuning Fork in Liquid $$^4$$ He Close to the $$\lambda $$ -Transition
  • DOI:
    10.1007/s10909-016-1684-8
  • 发表时间:
    2016-10-28
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Daniel Duda;Patrik Švančara;Marco La Mantia;Miloš Rotter;David Schmoranzer;Oleg Kolosov;Ladislav Skrbek
  • 通讯作者:
    Ladislav Skrbek
Acoustic Microscopy for Imaging and Characterization
  • DOI:
    10.1557/s0883769400031614
  • 发表时间:
    2013-11-29
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Andrew Briggs;Oleg Kolosov
  • 通讯作者:
    Oleg Kolosov
Benchmarking in The Dark: On the Absence of Comprehensive Edge Datasets
黑暗中的基准测试:缺乏全面的边缘数据集
Heat flow in atomic bottlenecks
原子瓶颈中的热流
  • DOI:
    10.1038/nnano.2016.306
  • 发表时间:
    2017-02-06
  • 期刊:
  • 影响因子:
    34.900
  • 作者:
    Oleg Kolosov
  • 通讯作者:
    Oleg Kolosov

Oleg Kolosov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Oleg Kolosov', 18)}}的其他基金

Towards disease diagnosis through spectrochemical imaging of tissue architecture.
通过组织结构的光谱化学成像进行疾病诊断。
  • 批准号:
    EP/K023373/1
  • 财政年份:
    2013
  • 资助金额:
    $ 95.05万
  • 项目类别:
    Research Grant
Non-Destructive Nanoscale Resolution using a Carbon Nanotube Scanning Thermal Probe
使用碳纳米管扫描热探针实现非破坏性纳米级分辨率
  • 批准号:
    EP/G015570/1
  • 财政年份:
    2009
  • 资助金额:
    $ 95.05万
  • 项目类别:
    Research Grant
Materials World Network-- Ultrafast Switching of Phase Change Materials: Combined Nanosecond and Nanometer Exploration
材料世界网——相变材料的超快切换:纳秒与纳米的结合探索
  • 批准号:
    EP/G06556X/1
  • 财政年份:
    2009
  • 资助金额:
    $ 95.05万
  • 项目类别:
    Research Grant

相似国自然基金

CFHTLS-Wide和CFHTLS-Stripe82观测的弱引力透镜星系团巡天
  • 批准号:
    11103011
  • 批准年份:
    2011
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Greenland-wide Assessment of Proglacial Melange Variability and Implications for Glacier Retreat
格陵兰范围前冰川混杂物变异性及其对冰川退缩的影响的评估
  • 批准号:
    2336627
  • 财政年份:
    2024
  • 资助金额:
    $ 95.05万
  • 项目类别:
    Standard Grant
EAGER: A Genome Wide HDR Enhancement Screen in Maize
EAGER:玉米全基因组 HDR 增强屏幕
  • 批准号:
    2409037
  • 财政年份:
    2024
  • 资助金额:
    $ 95.05万
  • 项目类别:
    Standard Grant
ASCENT: Heterogeneously Integrated and AI-Empowered Millimeter-Wave Wide-Bandgap Transmitter Array towards Energy- and Spectrum-Efficient Next-G Communications
ASCENT:异构集成和人工智能支持的毫米波宽带隙发射机阵列,实现节能和频谱高效的下一代通信
  • 批准号:
    2328281
  • 财政年份:
    2024
  • 资助金额:
    $ 95.05万
  • 项目类别:
    Standard Grant
A genome wide investigation into the roles of error-prone polymerases during human DNA replication
对易错聚合酶在人类 DNA 复制过程中的作用进行全基因组研究
  • 批准号:
    24K18094
  • 财政年份:
    2024
  • 资助金额:
    $ 95.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
  • 批准号:
    24K17312
  • 财政年份:
    2024
  • 资助金额:
    $ 95.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding the electronic structure landscape in wide band gap metal halide perovskites
了解宽带隙金属卤化物钙钛矿的电子结构景观
  • 批准号:
    EP/X039285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 95.05万
  • 项目类别:
    Research Grant
Unlocking the potential of single-photon wide-field microscopy
释放单光子宽视场显微镜的潜力
  • 批准号:
    EP/Y022491/1
  • 财政年份:
    2024
  • 资助金额:
    $ 95.05万
  • 项目类别:
    Research Grant
Differentiating innate and conditioned fear in behavioral level using pupillometry and neural level using brain-wide traveling wave
使用瞳孔测量法区分行为水平上的先天性恐惧和条件性恐惧,并使用全脑行波区分神经水平上的先天性恐惧和条件性恐惧
  • 批准号:
    23K28389
  • 财政年份:
    2024
  • 资助金额:
    $ 95.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Wide-area low-cost sustainable ocean temperature and velocity structure extraction using distributed fibre optic sensing within legacy seafloor cables
使用传统海底电缆中的分布式光纤传感进行广域低成本可持续海洋温度和速度结构提取
  • 批准号:
    NE/Y003365/1
  • 财政年份:
    2024
  • 资助金额:
    $ 95.05万
  • 项目类别:
    Research Grant
Toward next-generation flexible and interpretable deep learning: A novel evolutionary wide dendritic learning
迈向下一代灵活且可解释的深度学习:一种新颖的进化广泛的树突学习
  • 批准号:
    23K24899
  • 财政年份:
    2024
  • 资助金额:
    $ 95.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了