An insect-inspired approach to robotic grasping

受昆虫启发的机器人抓取方法

基本信息

  • 批准号:
    EP/V008102/1
  • 负责人:
  • 金额:
    $ 219.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

To be really useful, robots need to interact with objects in the world. The current inability of robots to grasp diverse objects with efficiency and reliability severely limits their range of application. Agriculture, mining and environmental clean-up arejust three examples where - unlike a factory - the items to be handled could have a huge variety of shapes and appearances, need to be identified amongst clutter, and need to be grasped firmly for transport while avoiding damage. Secure grasp of unknown objects amongst clutter remains an unsolved problem for robotics, despite improvements in 3Dsensing and reconstruction, in manipulator sophistication and the recent use of large-scale machine learning.This project proposes a new approach inspired by the high competence exhibited by ants when performing the closely equivalent task of collecting and manipulating diverse food items. Ants have relatvely simple, robot-like 'grippers' (their mouth-parts, called 'mandibles'), limited sensing (mostly tactile, using their antennae) and tiny brains. Yet they are able to pick up and carry a wide diversity of food items, from seeds to other insect prey, which can vary enormously in shape, size, rigidity and manouverability. They can quickly choose between multiple items and find an effective position to make their grasp, readjusting if necessary. Replicating even part of this competence on robots would be a significant advance. Grasping thus makes an ideal target for applying biorobotic methods that my group has previously used with substantial success to understand and mimic insect navigation behaviours on robots.How does an ant pick up an object? The first part of this project will be to set up the methods required to observe and analyse in detail the behaviour of ants interacting with objects. At the same time we will start to build both simulated and real robot systems that allow us to imitate the actions of an ant as it positions its body, head and mouth to make a grasp; using an omnidirectional robot base with an arm and gripper. We will also examine and imitate the sensory systems usedby the ant to determine the position, shape and size of the object before making a grasp.What happens in the ant's brain when it picks up an object? The second part will explore what algorithms insect brains need to compute to be able to make efficient and effective grasping decisions. Grasping is a task that contains in miniature many key issues in robot intelligence. It involves tight coupling of physical, perceptual and control systems. It involves a hierarchy of control decisions (whether to grasp, how to position the body and actuators, precise contact, dealing with uncertainty, detecting failure). It requires fusion of sensory information and transformation into the action state space, and involves prediction, planning and adaptation. We aim tounderstand how insects solve these problems as a route to efficient and effective solutions for robotics.Can a robot perform as well as an ant? The final part will test the systems we have developed in real world tasks. The first task will be to perform an object clearing task, which will also allow benchmarking of the developed system against existing research. The second task will be based ona pressing problem in environmental clean-up: detection and removal of small plastic items from amongst shoreline rocksand gravel. This novel area of research promises significant pay-off from translating biological understanding into technical advance because it addresses an important unsolved challenge for which the ant is an ideal animal model.
为了真正有用,机器人需要与世界上的物体进行交互。目前机器人无法有效和可靠地抓取各种物体,这严重限制了它们的应用范围。农业、采矿和环境清理只是其中的三个例子,与工厂不同,要处理的物品可能有各种各样的形状和外观,需要在杂乱中识别,并且需要在运输时牢牢抓住,同时避免损坏。尽管在3Dsensing和重建,在机械手的复杂性和最近使用的大规模的机器learning.This项目提出了一种新的方法,灵感来自蚂蚁表现出的高竞争力时,执行的收集和操纵不同的食物项目的密切等效的任务。蚂蚁有相对简单的机器人般的“抓手”(它们的嘴部,称为“下颚”),有限的感知(主要是触觉,使用它们的触角)和微小的大脑。然而,它们能够拾取和携带各种各样的食物,从种子到其他昆虫猎物,这些食物在形状,大小,硬度和机动性上都有很大的不同。他们可以快速地在多个项目中进行选择,并找到一个有效的位置来抓住,必要时重新调整。即使在机器人身上复制这种能力的一部分,也将是一个重大的进步。因此,抓取是应用生物机器人方法的理想目标,我的团队以前曾成功地使用这种方法来理解和模仿昆虫在机器人上的导航行为。该项目的第一部分将是建立观察和分析蚂蚁与物体相互作用的行为所需的方法。与此同时,我们将开始建立模拟和真实的机器人系统,使我们能够模仿蚂蚁的行动,因为它的位置,它的身体,头和嘴,使一个把握;使用一个全方位的机器人基地与手臂和抓手。我们还将研究和模仿蚂蚁在抓取物体之前确定物体的位置、形状和大小的感觉系统。当蚂蚁捡起物体时,它的大脑会发生什么?第二部分将探索昆虫大脑需要计算什么算法才能做出高效和有效的抓取决策。抓取是一个包含了机器人智能中许多关键问题的微型任务。它涉及物理、感知和控制系统的紧密耦合。它涉及一系列控制决策(是否抓取、如何定位身体和执行器、精确接触、处理不确定性、检测故障)。它需要融合感觉信息并转换到动作状态空间,并涉及预测,规划和适应。我们的目标是了解昆虫如何解决这些问题,从而为机器人技术提供高效的解决方案。机器人能像蚂蚁一样工作吗?最后一部分将在真实的世界任务中测试我们开发的系统。第一项任务将是执行一项目标清除任务,这也将使开发的系统与现有的研究进行基准测试。第二项任务将基于环境清理中的紧迫问题:从海岸线的岩石和砾石中检测和清除小塑料物品。这一新的研究领域有望将生物学理解转化为技术进步,因为它解决了一个重要的未解决的挑战,而蚂蚁是一个理想的动物模型。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Model of Ant Grasping Behaviour
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Barbara Webb其他文献

Robots in invertebrate neuroscience
无脊椎动物神经科学中的机器人
  • DOI:
    10.1038/417359a
  • 发表时间:
    2002-05-16
  • 期刊:
  • 影响因子:
    48.500
  • 作者:
    Barbara Webb
  • 通讯作者:
    Barbara Webb
Prediction of the size and spatial distribution of free-roaming dog populations in urban areas of Nepal.
尼泊尔城市地区自由漫游狗种群规模和空间分布的预测。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Sarah Tavlian;Mark A Stevenson;Barbara Webb;Khageshwaar Sharma;Jim Pearson;Andrea Britton;Caitlin N Pfeiffer
  • 通讯作者:
    Caitlin N Pfeiffer
Effects of Social Skill Instruction for High-Functioning Adolescents With Autism Spectrum Disorders
社交技能指导对患有自闭症谱系障碍的高功能青少年的影响
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Barbara Webb;S. Miller;T. Pierce;S. Strawser;Paul Jones
  • 通讯作者:
    Paul Jones
Integrating molecular photoswitch memory with nanoscale optoelectronics for neuromorphic computing
将分子光开关存储器与纳米级光电子学集成用于神经形态计算
  • DOI:
    10.1038/s43246-024-00707-w
  • 发表时间:
    2025-01-14
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    David Alcer;Nelia Zaiats;Thomas K. Jensen;Abbey M. Philip;Evripidis Gkanias;Nils Ceberg;Abhijit Das;Vidar Flodgren;Stanley Heinze;Magnus T. Borgström;Barbara Webb;Bo W. Laursen;Anders Mikkelsen
  • 通讯作者:
    Anders Mikkelsen
A model of antennal wall-following and escape in the cockroach
蟑螂触角壁追逃模型

Barbara Webb的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Barbara Webb', 18)}}的其他基金

Insect-inspired depth perception
受昆虫启发的深度知觉
  • 批准号:
    EP/X019632/1
  • 财政年份:
    2023
  • 资助金额:
    $ 219.02万
  • 项目类别:
    Research Grant
From insect navigation to neuromorphic intelligence
从昆虫导航到神经形态智能
  • 批准号:
    BB/T020911/1
  • 财政年份:
    2022
  • 资助金额:
    $ 219.02万
  • 项目类别:
    Research Grant
Visual navigation in ants: from visual ecology to brain
蚂蚁的视觉导航:从视觉生态到大脑
  • 批准号:
    BB/R005052/1
  • 财政年份:
    2018
  • 资助金额:
    $ 219.02万
  • 项目类别:
    Research Grant
Exploiting invisible cues for robot navigation in complex natural environments
利用隐形线索在复杂的自然环境中进行机器人导航
  • 批准号:
    EP/M008479/1
  • 财政年份:
    2015
  • 资助金额:
    $ 219.02万
  • 项目类别:
    Research Grant
Bayesian issues in ant navigation
蚂蚁导航中的贝叶斯问题
  • 批准号:
    BB/I014543/1
  • 财政年份:
    2011
  • 资助金额:
    $ 219.02万
  • 项目类别:
    Research Grant
Context dependent and multimodal learning: from insect brains to robot controllers
上下文相关和多模态学习:从昆虫大脑到机器人控制器
  • 批准号:
    EP/F030673/1
  • 财政年份:
    2008
  • 资助金额:
    $ 219.02万
  • 项目类别:
    Research Grant

相似国自然基金

多层次纳米叠层块体复合材料的仿生设计、制备及宽温域增韧研究
  • 批准号:
    51973054
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334898
  • 财政年份:
    2024
  • 资助金额:
    $ 219.02万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Fisher-Inspired Approach to Quickest Change Detection for Score-Based Models
合作研究:CIF:Small:Fisher 启发的基于评分模型的最快变化检测方法
  • 批准号:
    2334897
  • 财政年份:
    2024
  • 资助金额:
    $ 219.02万
  • 项目类别:
    Standard Grant
EAGER: A bio-inspired approach for improving ice-prevention and ice-removal
EAGER:一种改善防冰和除冰的仿生方法
  • 批准号:
    2337118
  • 财政年份:
    2023
  • 资助金额:
    $ 219.02万
  • 项目类别:
    Standard Grant
Development of a Compact Biomimetic Aerial Manipulator with Manipulation Capabilities
具有操控能力的紧凑型仿生空中机械手的研制
  • 批准号:
    23K13274
  • 财政年份:
    2023
  • 资助金额:
    $ 219.02万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Leveraging Automated Optimization of Inspired Oxygen and Oxidized Biomarker Lipidomics for Targeted Oxygenation during Mechanical Ventilation: a Pragmatic Clinical Trial
利用吸入氧和氧化生物标志物脂质组学的自动优化在机械通气期间进行靶向氧合:一项实用的临床试验
  • 批准号:
    10592000
  • 财政年份:
    2023
  • 资助金额:
    $ 219.02万
  • 项目类别:
Equipment Supplement to R35GM146987: Purchase of LC-MS system for high throughput isolation of bioactive natural products
R35GM146987 的设备补充:购买 LC-MS 系统,用于高通量分离生物活性天然产物
  • 批准号:
    10798569
  • 财政年份:
    2022
  • 资助金额:
    $ 219.02万
  • 项目类别:
Machine learning approaches for the discovery, repurposing, and optimization of natural products with therapeutic potential
用于发现、重新利用和优化具有治疗潜力的天然产物的机器学习方法
  • 批准号:
    10693375
  • 财政年份:
    2022
  • 资助金额:
    $ 219.02万
  • 项目类别:
A Bio-inspired Approach to Produce Novel Proteoslysis Targeting Chimeras
一种产生针对嵌合体的新型蛋白水解的仿生方法
  • 批准号:
    563587-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 219.02万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: An Inclusive Approach to Diversity Inspired Design on Novel 3D Printed Electric Motors
职业生涯:新型 3D 打印电动机的多样性启发设计的包容性方法
  • 批准号:
    2045776
  • 财政年份:
    2021
  • 资助金额:
    $ 219.02万
  • 项目类别:
    Continuing Grant
A Genomic Approach to Discovering Novel Cathepsin Inhibitors from Cyanobacteria
从蓝藻中发现新型组织蛋白酶抑制剂的基因组方法
  • 批准号:
    10531556
  • 财政年份:
    2021
  • 资助金额:
    $ 219.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了