Semi-automatic Data Tours to Support Data Exploration and Visualisation Literacy for Novice Analysts
半自动数据之旅支持新手分析师的数据探索和可视化素养
基本信息
- 批准号:EP/V010662/1
- 负责人:
- 金额:$ 33.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Data analysis is key to understanding timely phenomena from climate change to social media, from diseases to political conflicts, from the human brain to migration. In order to complement statistical analysis and modern machine learning approaches for data analysis, visualisation techniques and interactive interfaces support human-in-the-loop control over these systems as well as human sensemaking in cases where data is uncertain, requires greater overview for the generation of hypotheses, and effective communication to larger audiences. While more and more tools, such as Tableau, Gephi or Microsoft's PowerBI are democratising the use of data visualisation, using data visualisations to their full extend requires training novice analysts in tools, techniques, and interactive exploration, as well as communication and presentation. This project aims to free the analyst from their burden of exploring a data set from the beginning while having to chose among tools, learn their workflows, and create visualisations themselves. Rather, it aims to support novice analysts through a system that automatically displays information about a data set to an analyst while explaining visualisation techniques and findings. In such a "data tour", an analyst starts as a passive reader following a set of visualisations and textual explanations. Respective visualisations will be explained to the analyst. As the analyst becomes familiar with visualisations and their data, they are invited to explore the data by themselves through an interactive interface and communicate the system in which aspects they are most interested in.Creating effective data tours draws inspiration from previous work on using comics for data-driven storytelling (htttp://datacomics.net), visualisation cheatsheets (http://visualizationcheatsheets.github.io) and approaches to data visualisation literacy, data mining for networks, and human-computer interaction. To provide for specific data sets and contact with novice analysts for evaluating our tool, this project involves collaborators in history, archeology, sociology and network science and their complex geo-temporal networks including social networks, archeological trading networks, family networks, and Twitter networks. To create compelling data tours for these data sets we lack significant understanding of - current exploration strategies employed by analysts and their barriers to analysis,- ways of automatically extracting and annotating patterns-of-interest in networks, and- ways of creating meaningful explanatory sequences and high-level structures for data tours.This research involves a coordinated approach of field studies, visualisation and interface design, implementation, and user-centered evaluation. During a brief first phase, we will closely work with experts in Humanities research to create effective visualisations for their networks; in a second phase we mine and present insights from these data sets, and in the last phase, we investigate ways to structure and present findings in data tours. Our research will open new questions in how far storytelling and explaining visualisations can be supported by intelligent agents, i.e., computer programs, that partner with humans and engage in a dialogue. Our research may inspire new forms of intelligent interfaces that foresee an analyst's tasks and understand their specific interest in the data. Researchers in the digital humanities, social sciences, and network analysis will benefit from better support for visualising their geo-temporal networks and semi-automatic ways to analyse and lead to a better understanding of their data and new collaborative research agendas using visual analysis. Our project aims to provide impulses for commercial products and recommendation engines and will provide companies with knowledge and techniques to build customised data tours for their clients.
数据分析是理解从气候变化到社交媒体、从疾病到政治冲突、从人类大脑到移民等及时现象的关键。为了补充统计分析和用于数据分析的现代机器学习方法,可视化技术和交互界面支持对这些系统的人在环中控制,以及在数据不确定的情况下支持人的感觉产生,需要更多的概述来生成假设,并与更多的受众进行有效的沟通。虽然越来越多的工具,如Tableau、Gephi或微软的PowerBI正在普及数据可视化的使用,但要充分使用数据可视化,需要在工具、技术、交互探索以及沟通和演示方面培训新手分析师。该项目旨在将分析师从一开始就探索数据集的负担中解放出来,同时必须在工具中进行选择,学习他们的工作流程,并自己创建可视化。相反,它旨在通过一个系统为新手分析师提供支持,该系统在解释可视化技术和发现的同时,自动向分析师显示有关数据集的信息。在这样的“数据之旅”中,分析师一开始是一个被动的读者,遵循一系列可视化和文字解释。将向分析员解释各自的可视化。随着分析师对可视化及其数据的熟悉,他们被邀请通过交互界面自己探索数据,并与系统交流他们最感兴趣的方面。创建有效的数据之旅的灵感来自于以前使用漫画进行数据驱动的故事讲述(http://datacomics.net)、可视化小抄(http://visualizationcheatsheets.github.io)和数据可视化素养的方法)、网络的数据挖掘和人机交互的工作。为了提供特定的数据集并与新手分析师联系以评估我们的工具,该项目涉及历史学、考古学、社会学和网络科学的合作者及其复杂的地理-时间网络,包括社会网络、考古交易网络、家庭网络和Twitter网络。要为这些数据集创建引人入胜的数据之旅,我们缺乏对以下方面的重要理解:-当前分析师使用的探索策略及其分析障碍,-自动提取和注释网络中感兴趣的模式的方法,以及-为数据之旅创建有意义的解释序列和高级结构的方法。这项研究涉及实地研究、可视化和界面设计、实施和以用户为中心的评估的协调方法。在简短的第一阶段,我们将与人文研究专家密切合作,为他们的网络创建有效的可视化;在第二阶段,我们挖掘并展示来自这些数据集的见解,在最后阶段,我们调查在数据之旅中构建和展示发现的方法。我们的研究将打开新的问题,在多大程度上讲故事和解释可视化可以得到与人类合作并参与对话的智能代理,即计算机程序的支持。我们的研究可能会激发新形式的智能界面,这些界面可以预见分析师的任务,并理解他们对数据的具体兴趣。数字人文、社会科学和网络分析领域的研究人员将受益于对其地理时间网络可视化的更好支持,以及使用视觉分析更好地分析和导致对其数据和新的协作研究议程的理解的半自动方法。我们的项目旨在为商业产品和推荐引擎提供动力,并将为公司提供知识和技术,为他们的客户建立定制的数据之旅。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
NetworkNarratives: Data Tours for Visual Network Exploration and Analysis
- DOI:10.1145/3544548.3581452
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Wenchao Li;Sarah Schöttler;James Scott-Brown;Yun Wang;Siming Chen;Huamin Qu;Benjamin Bach
- 通讯作者:Wenchao Li;Sarah Schöttler;James Scott-Brown;Yun Wang;Siming Chen;Huamin Qu;Benjamin Bach
Show Me My Users: A Dashboard Visualizing User Interaction Logs
显示我的用户:可视化用户交互日志的仪表板
- DOI:10.1109/vis54172.2023.00040
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Wang J
- 通讯作者:Wang J
Understanding Barriers to Network Exploration With Visualization: A Report from the Trenches
通过可视化了解网络探索的障碍:来自战壕的报告
- DOI:10.1109/tvcg.2022.3209487
- 发表时间:2022
- 期刊:
- 影响因子:5.2
- 作者:AlKadi M
- 通讯作者:AlKadi M
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Bach其他文献
Drawing into the AR-CANVAS : Designing Embedded Visualizations for Augmented Reality
绘制 AR-CANVAS:设计增强现实的嵌入式可视化
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Benjamin Bach;Ronell Sicat;H. Pfister;A. Quigley - 通讯作者:
A. Quigley
Design space for spatio-data coordination: Tangible interaction devices for immersive information visualisation
空间数据协调的设计空间:用于沉浸式信息可视化的有形交互设备
- DOI:
10.1109/pacificvis.2017.8031578 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Maxime Cordeil;Benjamin Bach;Yongchao Li;Elliott Wilson;Tim Dwyer - 通讯作者:
Tim Dwyer
GridVis: Visualisation of Island-Based Parallel Genetic Algorithms
GridVis:基于岛的并行遗传算法的可视化
- DOI:
10.1007/978-3-662-45523-4_57 - 发表时间:
2014 - 期刊:
- 影响因子:5.2
- 作者:
E. Lutton;Hugo Gilbert;Waldo Gonzalo Cancino Ticona;Benjamin Bach;P. Parrend;Pierre Collet - 通讯作者:
Pierre Collet
It’s a Wrap: Toroidal Wrapping of Network Visualisations Supports Cluster Understanding Tasks
这是一个包装:网络可视化的环形包装支持集群理解任务
- DOI:
10.1145/3411764.3445439 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Kun;Tim Dwyer;Benjamin Bach;K. Marriott - 通讯作者:
K. Marriott
PARTICIPATORY DEEP MAPS: TOWARDS DISCURSIVE USER ENGAGEMENT WITH DATA VISUALIZATIONS
参与式深度地图:通过数据可视化实现用户的话语参与
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Tobias Kauer;Benjamin Bach;M. Dörk - 通讯作者:
M. Dörk
Benjamin Bach的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于计算模型的医用X线最优曝光控制技术的研究
- 批准号:60472004
- 批准年份:2004
- 资助金额:26.0 万元
- 项目类别:面上项目
相似海外基金
From corpus to target data as steps for automatic assessment of L2 speech: L2 French phonological lexicon of Japanese learners
从语料库到目标数据作为 L2 语音自动评估的步骤:日语学习者的 L2 法语语音词典
- 批准号:
23K20100 - 财政年份:2024
- 资助金额:
$ 33.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Automatic Estimation of Connections among Citizens Using Urban Tweet Data and its Social Application
利用城市推文数据自动估计公民之间的联系及其社交应用
- 批准号:
23H03686 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Automatic Landslide Mapping with Earth Observation Data
利用地球观测数据自动绘制滑坡地图
- 批准号:
2884587 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Studentship
SaTC: CORE: Small: Automatic Identification of Privilege-guard Variables for Data-only Attacks and Defenses
SaTC:核心:小型:自动识别纯数据攻击和防御的权限保护变量
- 批准号:
2247652 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Continuing Grant
Automatic quality assessment of waste plastic bales through hybrid sensing and data driven modelling
通过混合传感和数据驱动建模对废塑料包进行自动质量评估
- 批准号:
EP/W026228/1 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Research Grant
AddBiomechanics: Automatic Processing and Sharing of Human Movement Data
AddBiomechanics:人体运动数据的自动处理和共享
- 批准号:
10743411 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Automatic derivation of dynamical models from temporal network data using a graph rewriting system
使用图重写系统从时态网络数据自动推导动态模型
- 批准号:
23H03414 - 财政年份:2023
- 资助金额:
$ 33.26万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Multi-scale Mechanical Behavior of Quantum Dot Nanocomposites: Towards Data-driven Automatic Discovery of High-performance Structures
职业:量子点纳米复合材料的多尺度机械行为:迈向数据驱动的高性能结构的自动发现
- 批准号:
2145604 - 财政年份:2022
- 资助金额:
$ 33.26万 - 项目类别:
Standard Grant
Automatic extraction of hazard information from satellite InSAR ground motion data
从卫星InSAR地面运动数据中自动提取危险信息
- 批准号:
2749968 - 财政年份:2022
- 资助金额:
$ 33.26万 - 项目类别:
Studentship
Reducing Risks of Automatic Measurement and Analysis of POCUS Data in the Presence of Uncertainty
在存在不确定性的情况下降低 POCUS 数据自动测量和分析的风险
- 批准号:
559953-2021 - 财政年份:2022
- 资助金额:
$ 33.26万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral














{{item.name}}会员




