SEE MORE MAKE MORE: Secondary Electron Energy Measurement Optimisation for Reliable Manufacturing of Key Materials

查看更多 创造更多:二次电子能量测量优化,实现关键材料的可靠制造

基本信息

  • 批准号:
    EP/V012126/1
  • 负责人:
  • 金额:
    $ 149.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Additive manufacturing (AM), or 3D printing, is an exciting new form of industrial production that promises to revolutionise sectors as diverse as healthcare, energy, aerospace, and transport. By allowing stronger, lighter, and more complex components to be formed from a variety of materials, AM will play a critical role in meeting emerging technological needs over the coming decades. One area in which AM is already generating huge excitement is in bone tissue engineering for the production of implants for patients who have degenerative diseases or who need, for example, facial reconstruction following an accident or cancer. However, making large and load-bearing implants reproducibly is still a significant challenge. AM theoretically allows the reproduction of extremely complex geometries while also accounting for variation in the structural, mechanical, and cellular properties of bone tissue. Such flexibility will be essential to produce load-bearing 3D printed bones that have the strength to replace metal-based implants but which also mimic intricate vascular networks.Much of the flexibility of AM arises from its use of composites which combine the desirable properties of several different materials. Increasingly, in a form of AM that uses a laser to continually melt (sinter) the composite material, polymers are mixed with nano-carbon to make materials stronger and more conductive. However, an outstanding challenge in the field is to ensure that the carbon is evenly distributed throughout the matrix polymer to produce printed components with reliable properties. We also need to be able to monitor nanocarbon distribution in real time during AM which will require new, innovative methods of advanced metrology.Using the unique facilities and experience of our team, we will address these engineering challenges to provide the AM community with a step-change in their ability to produce bespoke high-quality components. To do this, we will build on significant breakthroughs we have recently made in developing new methods of hyperspectral imaging, that is, techniques that allow us to map the chemical and structural properties of a material and how these change under different conditions. Using electrons as a probe provides information on how nanocarbon particles interact with each other and their environment, for example, when heated with a laser. Such information is critical to optimise AM processes but, because this technique operates at the nanometer level, it is not practical for monitoring whole components whilst they are printed. For this, we will use another method of hyperspectral imaging based on thermal emission, similar to how we can measure temperature from the familiar glow emitted by hot coal in a fire. By combining these methods of electron imaging and thermal emission detection, we will be able to control how nanocarbon is distributed throughout a composite material and how this affects critical macroscale properties such as porosity, conductivity, strength, and surface finish. Together, this new hyperspectral imaging framework will benefit researchers and industry using AM for various applications leading to gains in cost, yield, energy efficiency, and lifetime.Once our framework is established, we will demonstrate its effectiveness by applying it to AM of bone tissue scaffolds from a novel composite we will develop containing nanocarbon mixed with a biocompatible polymer. By optimizing the laser heating process and controlling nanocarbon distribution and state, we will make scaffolds that are fit for clinical use, as validated through tests with our industry partner Lucideon. Other partners include NPL, ASTeC, YPS, Spintex, and FBK who will enhance the impact of our project through applications in Li ion batteries, pharmaceuticals, energy materials, and accelerator technologies.
增材制造 (AM) 或 3D 打印是一种令人兴奋的新型工业生产形式,有望彻底改变医疗保健、能源、航空航天和运输等各个行业。通过使用各种材料形成更强、更轻、更复杂的部件,增材制造将在满足未来几十年新兴技术需求方面发挥关键作用。增材制造已经引起巨大关注的一个领域是骨组织工程,为患有退行性疾病或需要在事故或癌症后进行面部重建的患者生产植入物。然而,可重复地制造大型承重植入物仍然是一个重大挑战。理论上,增材制造可以复制极其复杂的几何形状,同时还可以考虑骨组织的结构、机械和细胞特性的变化。这种灵活性对于生产承重 3D 打印骨骼至关重要,这种骨骼具有替代金属植入物的强度,同时也能模仿复杂的血管网络。增材制造的灵活性很大程度上来自于其使用的复合材料,该复合材料结合了几种不同材料的所需特性。越来越多的增材制造形式使用激光连续熔化(烧结)复合材料,聚合物与纳米碳混合,使材料变得更强、更导电。然而,该领域的一个突出挑战是确保碳均匀分布在整个基体聚合物中,以生产具有可靠性能的打印组件。我们还需要能够在增材制造过程中实时监测纳米碳的分布,这将需要新的、创新的先进计量方法。利用我们团队独特的设施和经验,我们将解决这些工程挑战,为增材制造社区提供生产定制高质量组件的能力的重大改变。为此,我们将基于最近在开发高光谱成像新方法方面取得的重大突破,即能够绘制材料的化学和结构特性以及这些特性在不同条件下如何变化的技术。使用电子作为探针提供有关纳米碳颗粒如何彼此及其环境相互作用的信息,例如,当用激光加热时。此类信息对于优化增材制造工艺至关重要,但由于该技术在纳米级别运行,因此在打印时监控整个组件并不实用。为此,我们将使用另一种基于热发射的高光谱成像方法,类似于我们如何通过火中热煤发出的熟悉的辉光来测量温度。通过结合电子成像和热发射检测的这些方法,我们将能够控制纳米碳在整个复合材料中的分布方式,以及它如何影响关键的宏观性能,例如孔隙率、电导率、强度和表面光洁度。总之,这个新的高光谱成像框架将有利于研究人员和工业界,将增材制造用于各种应用,从而提高成本、产量、能源效率和寿命。一旦我们的框架建立起来,我们将通过将其应用于骨组织支架的增材制造来证明其有效性,该新型复合材料是我们将开发的含有与生物相容性聚合物混合的纳米碳的新型复合材料。通过优化激光加热过程并控制纳米碳分布和状态,我们将制造适合临床使用的支架,并通过我们的行业合作伙伴 Lucideon 的测试进行验证。其他合作伙伴包括 NPL、ASTeC、YPS、Spintex 和 FBK,他们将通过在锂离子电池、制药、能源材料和加速器技术方面的应用来增强我们项目的影响力。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Characterization and quantification of oxidative stress induced particle debris from polypropylene surgical mesh
聚丙烯手术网片中氧化应激诱导的颗粒碎片的表征和定量
  • DOI:
    10.1002/nano.202200243
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Farr N
  • 通讯作者:
    Farr N
Aerosol jet printing polymer dispersed liquid crystals on highly curved optical surfaces and edges.
  • DOI:
    10.1038/s41598-022-23292-9
  • 发表时间:
    2022-11-02
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Image Correction and In Situ Spectral Calibration for Low-Cost, Smartphone Hyperspectral Imaging
  • DOI:
    10.3390/rs14051152
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Davies, Matthew;Stuart, Mary B.;Willmott, Jon R.
  • 通讯作者:
    Willmott, Jon R.
Assessing the Quality of Oxygen Plasma Focused Ion Beam (O-PFIB) Etching on Polypropylene Surfaces Using Secondary Electron Hyperspectral Imaging.
  • DOI:
    10.3390/polym15153247
  • 发表时间:
    2023-07-30
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Farr NTH;Pasniewski M;de Marco A
  • 通讯作者:
    de Marco A
Revealing The Morphology of Ink and Aerosol Jet Printed Palladium-Silver Alloys Fabricated from Metal Organic Decomposition Inks.
揭示由金属有机分解油墨制造的油墨和气溶胶喷射印刷钯银合金的形态。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cornelia Rodenburg其他文献

Evidence of time dependent degradation of polypropylene surgical mesh explanted from the abdomen and vagina of sheep
  • DOI:
    10.1016/j.jmbbm.2024.106722
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nicholas T.H. Farr;David A. Gregory;Victoria L. Workman;Cassandra Rauert;Sabiniano Roman;Alexander J. Knight;Anthony J. Bullock;Alexander I. Tartakovskii;Kevin V. Thomas;Christopher R. Chapple;Jan Deprest;Sheila MacNeil;Cornelia Rodenburg
  • 通讯作者:
    Cornelia Rodenburg
Fabrication of hierarchically porous carbon lattices derived from 3D-Printed polymerized high internal phase emulsions
由 3D 打印聚合高内相乳液衍生的分级多孔碳晶格的制备
  • DOI:
    10.1016/j.carbon.2024.119933
  • 发表时间:
    2025-03-05
  • 期刊:
  • 影响因子:
    11.600
  • 作者:
    Nihan Sengokmen-Ozsoz;Rebecca Boston;Julian S. Dean;Cornelia Rodenburg;Frederik Claeyssens
  • 通讯作者:
    Frederik Claeyssens
Capturing microalgae within aerosols provides carbon capture bio-functionality
在气溶胶中捕获微藻提供了碳捕获的生物功能
  • DOI:
    10.1016/j.jcou.2025.103024
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    8.400
  • 作者:
    Elbaraa Elghazy;Matt M.J Davies;Nicholas T.H Farr;Cornelia Rodenburg;Jon R. Willmott;Jagroop Pandhal
  • 通讯作者:
    Jagroop Pandhal

Cornelia Rodenburg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cornelia Rodenburg', 18)}}的其他基金

SEE MORE: SECONDARY ELECTRON EMISSION - MICROSCOPY FOR ORGANICS WITH RELIABLE ENGINEERING-PROPERTIES
查看更多:二次电子发射 - 具有可靠工程性能的有机物的显微镜检查
  • 批准号:
    EP/N008065/1
  • 财政年份:
    2016
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Fellowship
Quantitative, high resolution two-and-three dimensional dopant mapping in the Scanning Electron Microscope by Secondary Electron Spectro-Micro
通过二次电子能谱显微镜在扫描电子显微镜中进行定量、高分辨率二维和三维掺杂剂测绘
  • 批准号:
    EP/E030602/1
  • 财政年份:
    2007
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Research Grant

相似海外基金

How can we make use of one or more computationally powerful virtual robots, to create a hive mind network to better coordinate multi-robot teams?
我们如何利用一个或多个计算能力强大的虚拟机器人来创建蜂巢思维网络,以更好地协调多机器人团队?
  • 批准号:
    2594635
  • 财政年份:
    2025
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Studentship
CIF: Small: NSF-DST: Zak-OTFS - How to Make Communication and Radar Sensing More Predictable in 6G
CIF:小型:NSF-DST:Zak-OTFS - 如何使 6G 中的通信和雷达传感更具可预测性
  • 批准号:
    2342690
  • 财政年份:
    2024
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Standard Grant
Making Telemedicine More User-Friendly to Make Healthcare Accessible to All
让远程医疗更加人性化,让所有人都能获得医疗服务
  • 批准号:
    24K15617
  • 财政年份:
    2024
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Did the 2022 strong polar vortex make serial extratropical cyclone clustering more likely? (StratClust)
2022年的强极地涡旋是否使系列温带气旋聚集的可能性更大?
  • 批准号:
    NE/X011933/1
  • 财政年份:
    2023
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Research Grant
Psychedelics and health equity: A public conversation on how to make the psychedelic sector in Canada more equitable, accessible, anti-racist and culturally safe.
迷幻药和健康公平:关于如何使加拿大迷幻药行业更加公平、容易获得、反种族主义和文化安全的公开对话。
  • 批准号:
    485675
  • 财政年份:
    2023
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Miscellaneous Programs
Curating by Community Consent? An investigation of the civic art gallery's strategies to make collections and displays more "representative"
经社区同意进行策划?
  • 批准号:
    2885470
  • 财政年份:
    2023
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Studentship
Using Learning Assistants to Make Physics Teaching More Effective, Equitable, and Engaging
使用学习助手使物理教学更有效、更公平、更有吸引力
  • 批准号:
    2235744
  • 财政年份:
    2023
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Standard Grant
Using Learning Assistants to Make Physics Teaching More Effective, Equitable, and Engaging
使用学习助手使物理教学更有效、更公平、更有吸引力
  • 批准号:
    2235760
  • 财政年份:
    2023
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Standard Grant
Temperature sensitive male fertility; uncovering the mechanisms that make fertility in some species more vulnerable to high temperature
温度敏感的男性生育能力;
  • 批准号:
    BB/W016753/1
  • 财政年份:
    2023
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Research Grant
More real than reality: using deep learning networks to resolve how people make sense of other people's behaviour
比现实更真实:使用深度学习网络来解决人们如何理解他人行为的问题
  • 批准号:
    2889133
  • 财政年份:
    2023
  • 资助金额:
    $ 149.3万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了