Earth-abundant catalysts and novel layered 2D perovskites for solar water splitting (H2CAT)
地球上丰富的催化剂和新型层状二维钙钛矿用于太阳能水分解(H2CAT)
基本信息
- 批准号:EP/V012932/1
- 负责人:
- 金额:$ 151.61万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Committee on Climate Change concluded that clean hydrogen production was essential for meeting UK's goal of net zero carbon emission by 2050. Of the 27 TWh of hydrogen produced per annum in the UK, only 1TWh of comes from direct electrolysis of water using renewable energy sources. The production of truly clean hydrogen using renewable sources requires a step change in the materials and device development. Moreover, the state-of-the-art methods utilizing renewable energy for production of hydrogen rely on expensive catalysts such as platinum, ruthenium and iridium. Thus, there is an urgent need to for reducing reliance on resource limited materials. According to a recent strategic document on clean production of hydrogen developed by the Sir Henry Royce Institute (SHRI), photochemical methods for clean production of hydrogen offer an attractive strand for high risk/high reward research activity for the UK. The SHRI suggests that for solar to hydrogen to be viable, an increase in efficiency from 1% to 10 - 15% is required through development of new catalysts and photo-electrode materials. High efficiency PEC cells for water splitting could be disruptive and the UK is in a world leading position to realize and translate this technology. To reap the benefits of PEC cells for clean hydrogen production, fundamental limitations of long-term stability of photo-electrodes with band gaps between 1 - 2 eV must be overcome. A photochemical cell typically uses semiconductor/liquid, which depending on the band-edge position can initiate HER or OER or both, whereas in a PEC, the semiconductor is usually a wide band-gap material that also serves as the photocatalyst. For photochemical cells, a mandatory requirement is for the semiconductor to be stable in aqueous media and this is a key challenge. On the other hand, PECs employing wide band-gap catalysts are stable but the efficiency is around 1%, thus making them impractical for large scale generation of hydrogen. This proposal aims to pioneer photo-electrodes (cathodes and anodes) that overcome the current limitations using layered 2D halide perovskites as extremely efficient light absorbers and voltage sources - with the motivation to understand key processes that underpin their stability so that devices with unprecedented energy efficiency and performance can be realized. The proposal builds on our recent breakthroughs in HER and OER catalysts (Science 2016, Nature Materials 2019) as well as pioneering work in efficient and stable hybrid perovskite solar cells (Nature, 2018 & 2020). It also builds on strategic investments in the Materials for Energy Transition theme at Cambridge through the SHRI. Our ambition is to achieve band gap tunable layered 2D perovskites with ideal band offsets that are electronically coupled to inexpensive and earth abundant HER and OER catalysts through mechanical/environmental barriers that will address and overcome the long-standing challenge of realizing high efficiency PEC cells with simple device design. The proposed work will underpin and impact ongoing programmes and initiatives aligned with several EPSRC priority areas in energy materials. This includes adaptation operando characterization of catalyst materials, 2D materials and stable operation of perovskites for solar cells. This proposal aims to bring a step-change and establish an internationally leading programme in solar production of hydrogen using high- performance PEC cells based on two-dimensional catalyst materials and hybrid perovskites as photo-electrodes that will add value and connect a broad range of communities. The proposed work will open up new pathways for achieving in-depth fundamental knowledge of physics of novel devices based on 2D and hybrid perovskite materials to accelerate their development towards technological readiness and commercialization in higher value-added products.
气候变化委员会得出结论,清洁的氢气生产对于实现英国到2050年净零碳排放的目标至关重要。在英国每年生产的27 TWh氢气中,只有1 TWh来自使用可再生能源的直接电解水。使用可再生能源生产真正清洁的氢气需要在材料和设备开发方面进行一步改变。此外,利用可再生能源生产氢气的现有技术方法依赖于昂贵的催化剂,如铂、钌和铱。因此,迫切需要减少对资源有限的材料的依赖。根据亨利罗伊斯爵士研究所(SHRI)最近制定的关于清洁生产氢气的战略文件,清洁生产氢气的光化学方法为英国的高风险/高回报研究活动提供了一个有吸引力的链。SHRI建议,要使太阳能转化为氢气变得可行,需要通过开发新的催化剂和光电极材料将效率从1%提高到10 - 15%。用于水分解的高效PEC电池可能具有破坏性,英国在实现和转化这项技术方面处于世界领先地位。为了获得PEC电池用于清洁制氢的益处,必须克服带隙在1 - 2 eV之间的光电极的长期稳定性的基本限制。光化学电池通常使用半导体/液体,其取决于带边位置可以引发HER或OER或两者,而在PEC中,半导体通常是宽带隙材料,其也用作光催化剂。对于光化学电池,强制性要求是半导体在水介质中稳定,这是一个关键的挑战。另一方面,采用宽带隙催化剂的佩奇是稳定的,但效率为约1%,因此使它们不适用于大规模产生氢气。该提案旨在开拓光电极(阴极和阳极),使用层状2D卤化物钙钛矿作为极其有效的光吸收剂和电压源来克服电流限制-其动机是了解支撑其稳定性的关键过程,以便实现具有前所未有的能源效率和性能的设备。该提案基于我们最近在HER和OER催化剂方面的突破(Science 2016,Nature Materials 2019)以及在高效稳定的混合钙钛矿太阳能电池方面的开创性工作(Nature,2018和2020)。它还通过SHRI建立在剑桥能源转型材料主题的战略投资基础上。我们的目标是实现具有理想带偏移的带隙可调层状2D钙钛矿,其通过机械/环境障碍与廉价且地球丰富的HER和OER催化剂电子耦合,这将解决并克服用简单的器件设计实现高效率PEC电池的长期挑战。拟议的工作将支持和影响正在进行的方案和倡议,这些方案和倡议与能源材料方面的几个EPSRC优先领域保持一致。这包括催化剂材料、2D材料的适应性操作表征以及用于太阳能电池的钙钛矿的稳定操作。该提案旨在带来一个跨越式的变化,并建立一个国际领先的太阳能制氢计划,使用基于二维催化剂材料和混合钙钛矿的高性能PEC电池作为光电极,增加价值并连接广泛的社区。拟议的工作将为深入了解基于2D和混合钙钛矿材料的新型器件的物理基础知识开辟新的途径,以加速其在高附加值产品中的技术准备和商业化发展。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Substitution of lead with tin suppresses ionic transport in halide perovskite optoelectronics.
- DOI:10.1039/d3ee03772j
- 发表时间:2024-01-23
- 期刊:
- 影响因子:32.5
- 作者:Dey, Krishanu;Ghosh, Dibyajyoti;Pilot, Matthew;Pering, Samuel R.;Roose, Bart;Deswal, Priyanka;Senanayak, Satyaprasad P.;Cameron, Petra J.;Islam, M. Saiful;Stranks, Samuel D.
- 通讯作者:Stranks, Samuel D.
Extracting Decay-Rate Ratios From Photoluminescence Quantum Efficiency Measurements in Optoelectronic Semiconductors
从光电半导体中的光致发光量子效率测量中提取衰减率
- DOI:10.1103/physrevapplied.17.044026
- 发表时间:2022
- 期刊:
- 影响因子:4.6
- 作者:Bowman A
- 通讯作者:Bowman A
Ultrahigh Pt-Mass-Activity Hydrogen Evolution Catalyst Electrodeposited from Bulk Pt
- DOI:10.1002/adfm.202112207
- 发表时间:2022-02-18
- 期刊:
- 影响因子:19
- 作者:Liu, Luan;Wang, Yan;Qin, Mingli
- 通讯作者:Qin, Mingli
Tunable Multiband Halide Perovskite Tandem Photodetectors with Switchable Response.
具有可切换响应的可调谐多波段卤化物钙钛矿串联光电探测器。
- DOI:10.17863/cam.92108
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Moseley O
- 通讯作者:Moseley O
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manish Chhowalla其他文献
Photoredox phase engineering of transition metal dichalcogenides
过渡金属二硫化物的光氧化还原相工程
- DOI:
10.1038/s41586-024-07872-5 - 发表时间:
2024-08-28 - 期刊:
- 影响因子:48.500
- 作者:
Juhwan Lim;Jung-In Lee;Ye Wang;Nicolas Gauriot;Ebin Sebastian;Manish Chhowalla;Christoph Schnedermann;Akshay Rao - 通讯作者:
Akshay Rao
Low-dimensional catalysts for hydrogen evolution and CO2 reduction
用于析氢和二氧化碳还原的低维催化剂
- DOI:
10.1038/s41570-017-0105 - 发表时间:
2018-01-10 - 期刊:
- 影响因子:51.700
- 作者:
Damien Voiry;Hyeon Suk Shin;Kian Ping Loh;Manish Chhowalla - 通讯作者:
Manish Chhowalla
化学的剥離によるWS2ナノシートの作製と水素発生反応触媒特性
化学剥离制备WS2纳米片及其催化产氢反应性能
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
藤田 武志;陳 明偉;Damien Voiry;山口尚登;Manish Chhowalla;江田 剛輝 - 通讯作者:
江田 剛輝
From bulk to molecularly thin hybrid perovskites
从块状到分子级薄的杂化钙钛矿
- DOI:
10.1038/s41578-020-0185-1 - 发表时间:
2020-03-30 - 期刊:
- 影响因子:86.200
- 作者:
Kai Leng;Wei Fu;Yanpeng Liu;Manish Chhowalla;Kian Ping Loh - 通讯作者:
Kian Ping Loh
Spin injection in graphene using ferromagnetic van der Waals contacts of indium and cobalt
利用铟和钴的铁磁范德华接触在石墨烯中进行自旋注入
- DOI:
10.1038/s41928-024-01330-w - 发表时间:
2025-01-20 - 期刊:
- 影响因子:40.900
- 作者:
Soumya Sarkar;Saeyoung Oh;Peter J. Newton;Yang Li;Yiru Zhu;Maheera Abdul Ghani;Han Yan;Hu Young Jeong;Yan Wang;Manish Chhowalla - 通讯作者:
Manish Chhowalla
Manish Chhowalla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manish Chhowalla', 18)}}的其他基金
van der Waals Heterostructures for Next-generation Hot Carrier Photovoltaics
用于下一代热载流子光伏的范德华异质结构
- 批准号:
EP/Y028287/1 - 财政年份:2024
- 资助金额:
$ 151.61万 - 项目类别:
Fellowship
Demonstrating large-scale and high-performance lithium-sulfur batteries
展示大规模高性能锂硫电池
- 批准号:
EP/Y036735/1 - 财政年份:2023
- 资助金额:
$ 151.61万 - 项目类别:
Research Grant
Low Resistance Contacts on Atomically Thin Body Semiconductors for Energy Efficient Electronics (LoResCon)
用于节能电子产品的原子薄体半导体上的低电阻触点 (LoResCon)
- 批准号:
EP/T026200/1 - 财政年份:2020
- 资助金额:
$ 151.61万 - 项目类别:
Research Grant
Graphene 2014 Conference at Rutgers University, New Brunswick May 6-9, 2014
石墨烯 2014 年会议,新不伦瑞克罗格斯大学,2014 年 5 月 6-9 日
- 批准号:
1442698 - 财政年份:2014
- 资助金额:
$ 151.61万 - 项目类别:
Standard Grant
Electrodes for Large Area Electronics Based on Partially Oxidized Graphene
基于部分氧化石墨烯的大面积电子电极
- 批准号:
1128335 - 财政年份:2011
- 资助金额:
$ 151.61万 - 项目类别:
Standard Grant
IGERT: Nanotechnology for Clean Energy
IGERT:清洁能源纳米技术
- 批准号:
0903661 - 财政年份:2009
- 资助金额:
$ 151.61万 - 项目类别:
Continuing Grant
GOALI: Investigation of Structure and Properties of Si Doped Boron Carbide
GOALI:硅掺杂碳化硼的结构和性能研究
- 批准号:
0604314 - 财政年份:2006
- 资助金额:
$ 151.61万 - 项目类别:
Continuing Grant
CAREER: Organic Memory Devices Based on Insulating Polymers and C60 Fullerene Molecules
职业:基于绝缘聚合物和 C60 富勒烯分子的有机存储器件
- 批准号:
0543867 - 财政年份:2006
- 资助金额:
$ 151.61万 - 项目类别:
Standard Grant
Single Wall Carbon Nanotube Architectures for Molecular-Scale Spin Injection Devices
用于分子级自旋注入装置的单壁碳纳米管结构
- 批准号:
0400501 - 财政年份:2004
- 资助金额:
$ 151.61万 - 项目类别:
Standard Grant
相似海外基金
Creation of a Membraneless Protocell with Earth-abundant Transition Metal Catalysts
使用地球丰富的过渡金属催化剂创建无膜原始细胞
- 批准号:
24K17795 - 财政年份:2024
- 资助金额:
$ 151.61万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
LEAPS-MPS Discovery of Earth-abundant Transition-metal Catalysts for Small Molecule Functionalization and Mechanistic Insights
LEAPS-MPS 发现地球丰富的过渡金属催化剂,用于小分子功能化和机理见解
- 批准号:
2316526 - 财政年份:2023
- 资助金额:
$ 151.61万 - 项目类别:
Standard Grant
Sustainable fuel production through earth abundant catalysts
通过地球上丰富的催化剂可持续生产燃料
- 批准号:
RGPIN-2018-06744 - 财政年份:2022
- 资助金额:
$ 151.61万 - 项目类别:
Discovery Grants Program - Individual
CAS: Bimetallic Transition Metal Phosphide Nanostructures as High-Efficiency, Earth-Abundant, and Durable Catalysts for Electrochemical Water Splitting
CAS:双金属过渡金属磷化物纳米结构作为高效、地球丰富且耐用的电化学水分解催化剂
- 批准号:
2154747 - 财政年份:2022
- 资助金额:
$ 151.61万 - 项目类别:
Standard Grant
Earth-abundant Heterogeneous Catalysts for the Synthesis of Renewable Fuels
地球丰富的多相催化剂用于合成可再生燃料
- 批准号:
RGPIN-2021-03162 - 财政年份:2022
- 资助金额:
$ 151.61万 - 项目类别:
Discovery Grants Program - Individual
Earth abundant element catalysts - Fe, B, Al not feeble compounds for polymer production and conversion of carbon dioxide
地球丰富元素催化剂 - Fe、B、Al 非弱化合物,用于聚合物生产和二氧化碳转化
- 批准号:
RGPIN-2019-04938 - 财政年份:2022
- 资助金额:
$ 151.61万 - 项目类别:
Discovery Grants Program - Individual
Earth-abundant Heterogeneous Catalysts for the Synthesis of Renewable Fuels
地球丰富的多相催化剂用于合成可再生燃料
- 批准号:
DGECR-2021-00238 - 财政年份:2021
- 资助金额:
$ 151.61万 - 项目类别:
Discovery Launch Supplement
Earth abundant element catalysts - Fe, B, Al not feeble compounds for polymer production and conversion of carbon dioxide
地球丰富元素催化剂 - Fe、B、Al 非弱化合物,用于聚合物生产和二氧化碳转化
- 批准号:
RGPIN-2019-04938 - 财政年份:2021
- 资助金额:
$ 151.61万 - 项目类别:
Discovery Grants Program - Individual
Earth-abundant Heterogeneous Catalysts for the Synthesis of Renewable Fuels
地球丰富的多相催化剂用于合成可再生燃料
- 批准号:
RGPIN-2021-03162 - 财政年份:2021
- 资助金额:
$ 151.61万 - 项目类别:
Discovery Grants Program - Individual
Sustainable fuel production through earth abundant catalysts
通过地球上丰富的催化剂可持续生产燃料
- 批准号:
RGPIN-2018-06744 - 财政年份:2021
- 资助金额:
$ 151.61万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




