Quantum and Many Body Physics Enabled by Advanced Semiconductor Nanotechnology
先进半导体纳米技术支持的量子和多体物理
基本信息
- 批准号:EP/V026496/1
- 负责人:
- 金额:$ 783.19万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Light emitting semiconductor materials and devices dominate many aspects of everyday life. Their influence is all pervasive providing the sources which enable the internet, large area displays, room and street lighting to give just a few examples. Their existence relies on the high quality semiconductor structures which may be prepared by advanced crystal growth and sophisticated nanofabrication. Our proposal aims to capitalise on the advanced growth and fabrication to achieve similar advances in the quantum world where often counter-intuitive behaviour is governed solely by the laws of quantum mechanics. Our overall aim is to explore the behaviour of nano-devices operating in regimes where fundamentally new types of quantum-photonic phenomena occur, with potential to underpin the next generation of quantum technologies. We focus on two complementary systems: III-V semiconductors with their highly perfect crystal lattices, proven ability to emit photons one by one and long coherence quantum states, and atomically-thin graphene-like two dimensional (2D) semiconductors enabling new band structures, stable electron-hole bound states (excitons) and easy integration with patterned structures. The combination of the two material systems is powerful enabling phenomena ranging from the single photon level up to dense many-particle states where interactions dominate. A significant part of our programme focusses on on-chip geometries, enabling scale-up as likely required for applications. The semiconductor systems we employ interact strongly with photons; we will achieve interactions between photons which normally do not interact. We will gain entry into the regime of highly non-linear cavity quantum electrodynamics. Excitons (coupled electron-hole pairs) and photons interact strongly, enabling ladders of energy levels leading to on-chip production of few photon states. By coupling cavities together, we will aim for highly correlated states of photons. These advances are likely to be important components of photonic quantum processors and quantum communication systems. In similar structures, we access regimes of high density where electrons and holes condense into highly populated states (condensates). We aim to answer long-standing fundamental questions about the types of phase transitions that can occur in equilibrium systems and in out-of-equilibrium ones which have loss balanced by gain. We will also study condensate systems up to high temperatures, potentially in excess of 100K, and of the mechanisms underlying phase transitions to condensed states. The condensed state systems, besides their fundamental interest, also have potential as new forms of miniature coherent light sources.Nanofabrication will play a vital role enabling confinement of light on sub-wavelength length scales and fabrication of cavities for photons such that they have very long lifetimes before escaping. The ability to place high quality emitters within III-V nanophotonic structures will receive enhancement and potential world lead from a crystal growth machine we have recently commissioned, specially designed for this purpose, funded by the UK Quantum Technologies programme. Similar impact is expected from our ability to prepare 2D heterostructures (atomically thin layers of two separate materials placed one on top of the other) under conditions of ultrahigh vacuum free from contamination, enabling realisation of bound electron-hole pair states of very long lifetime, the route to condensation to high density states. The easy integration of 2D heterostructures with patterned photonic structures furthermore enables nonlinear and quantum phenomena to be studied, including in topological structures where light flow is immune to scattering by defects.Taken all together we have the ingredients in place to achieve ground-breaking advances in fundamental quantum photonics with considerable potential to underpin next generations of quantum technologies.
发光半导体材料和器件主导着日常生活的许多方面。他们的影响是无处不在的,提供了使互联网,大面积显示器,房间和街道照明的来源,仅举几个例子。它们的存在依赖于可以通过先进的晶体生长和复杂的纳米纤维制备的高质量半导体结构。我们的提案旨在利用先进的增长和制造技术,在量子世界中实现类似的进步,在量子世界中,往往违反直觉的行为只受量子力学定律的支配。我们的总体目标是探索纳米器件的行为,这些纳米器件在根本上新型的量子光子现象发生的制度中运行,有可能支撑下一代量子技术。我们专注于两个互补的系统:III-V族半导体具有高度完美的晶格,证明能够逐个发射光子和长相干量子态,以及原子薄的石墨烯状二维(2D)半导体,能够实现新的能带结构,稳定的电子-空穴束缚态(激子)和易于与图案化结构集成。这两种材料系统的结合是强大的,能够实现从单光子水平到相互作用占主导地位的密集多粒子状态的现象。我们的计划的一个重要部分集中在片上几何形状,使规模扩大可能需要的应用。我们所使用的半导体系统与光子有很强的相互作用;我们将实现通常不相互作用的光子之间的相互作用。我们将进入高度非线性腔量子电动力学的领域。激子(耦合的电子-空穴对)和光子强烈地相互作用,使得能级的阶梯能够导致在芯片上产生少数光子状态。通过将腔耦合在一起,我们的目标是光子的高度相关态。这些进展很可能是光子量子处理器和量子通信系统的重要组成部分。在类似的结构中,我们进入高密度的区域,其中电子和空穴凝聚成高度填充的状态(凝聚体)。我们的目标是回答长期存在的基本问题的类型的相变,可以发生在平衡系统和非平衡的损失平衡的增益。我们还将研究冷凝系统达到高温,可能超过100 K,以及相变到凝聚态的机制。凝聚态系统,除了他们的基本利益,也有潜力作为新形式的微型相干光源。纳米纤维将发挥至关重要的作用,使光的限制在亚波长的长度尺度和制造腔的光子,使他们有很长的寿命之前逃逸。在III-V纳米光子结构中放置高质量发射器的能力将从我们最近委托的晶体生长机中获得增强和潜在的世界领先地位,该晶体生长机专门为此目的而设计,由英国量子技术计划资助。类似的影响预计从我们的能力,以准备二维异质结构(原子薄层的两个单独的材料放置在另一个顶部)在无污染的超真空条件下,使实现的束缚电子空穴对状态的寿命非常长,途径冷凝到高密度状态。2D异质结构与图案化光子结构的简单集成进一步使非线性和量子现象得以研究,包括在光流不受缺陷散射影响的拓扑结构中。综上所述,我们具备了在基础量子光子学方面取得突破性进展的要素,并具有相当大的潜力来支撑下一代量子技术。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Non-equilibrium Berezinskii-Kosterlitz-Thouless transition in driven-dissipative condensates (a)
驱动耗散凝聚态中的非平衡 Berezinskii-Kosterlitz-Thouless 转变 (a)
- DOI:10.1209/0295-5075/133/17002
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Comaron P
- 通讯作者:Comaron P
Unconventional Berezinskii-Kosterlitz-Thouless Transition in the Multicomponent Polariton System
多分量极化子系统中的非常规Berezinskii-Kosterlitz-Thouless转变
- DOI:10.48550/arxiv.2208.04167
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dagvadorj G
- 通讯作者:Dagvadorj G
Polariton lasing in AlGaN microring with GaN/AlGaN quantum wells
具有 GaN/AlGaN 量子阱的 AlGaN 微环中的极化子激光
- DOI:10.1063/5.0132170
- 发表时间:2023
- 期刊:
- 影响因子:5.6
- 作者:Delphan A
- 通讯作者:Delphan A
Unconventional Berezinskii-Kosterlitz-Thouless Transition in the Multicomponent Polariton System.
多分量极化子系统中的非常规 Berezinskii-Kosterlitz-Thouless 转变。
- DOI:10.1103/physrevlett.130.136001
- 发表时间:2023
- 期刊:
- 影响因子:8.6
- 作者:Dagvadorj G
- 通讯作者:Dagvadorj G
Full and fractional defects across the Berezinskii-Kosterlitz-Thouless transition in a driven-dissipative spinor quantum fluid
- DOI:10.1103/physrevresearch.5.043286
- 发表时间:2023-12
- 期刊:
- 影响因子:4.2
- 作者:G. Dagvadorj;P. Comaron;M. H. Szymańska
- 通讯作者:G. Dagvadorj;P. Comaron;M. H. Szymańska
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmtriy Krizhanovskii其他文献
Dmtriy Krizhanovskii的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmtriy Krizhanovskii', 18)}}的其他基金
Penrose processes in an analogue black hole formed in hybrid light-matter (polariton) superfluid
混合光物质(极化子)超流体中形成的模拟黑洞中的彭罗斯过程
- 批准号:
ST/W006294/1 - 财政年份:2022
- 资助金额:
$ 783.19万 - 项目类别:
Research Grant
InterPol: Polariton lattices: a solid-state platform for quantum simulations of correlated and topological states
国际刑警组织:极化子晶格:用于相关态和拓扑态量子模拟的固态平台
- 批准号:
EP/R04385X/1 - 财政年份:2018
- 资助金额:
$ 783.19万 - 项目类别:
Research Grant
Nonlinear polariton phenomena in GaN-based slab waveguides at temperatures up to 300 K
温度高达 300 K 时 GaN 基平板波导中的非线性极化子现象
- 批准号:
EP/R007977/1 - 财政年份:2018
- 资助金额:
$ 783.19万 - 项目类别:
Research Grant
Polariton lasing and Bose-Einstein condensation in an electrically pumped system
电泵系统中的极化子激光和玻色-爱因斯坦凝聚
- 批准号:
EP/H023259/1 - 财政年份:2010
- 资助金额:
$ 783.19万 - 项目类别:
Research Grant
Quantum properties of polariton condensates in microcavity devices
微腔器件中极化子凝聚体的量子特性
- 批准号:
EP/E051448/1 - 财政年份:2007
- 资助金额:
$ 783.19万 - 项目类别:
Fellowship
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
NSF-BSF: Many-Body Physics of Quantum Computation
NSF-BSF:量子计算的多体物理学
- 批准号:
2338819 - 财政年份:2024
- 资助金额:
$ 783.19万 - 项目类别:
Continuing Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
- 批准号:
2300172 - 财政年份:2024
- 资助金额:
$ 783.19万 - 项目类别:
Continuing Grant
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
- 批准号:
EP/Y036069/1 - 财政年份:2024
- 资助金额:
$ 783.19万 - 项目类别:
Research Grant
Understanding spectral statistics and dynamics in strongly-interacting quantum many-body systems
了解强相互作用量子多体系统中的光谱统计和动力学
- 批准号:
EP/X042812/1 - 财政年份:2024
- 资助金额:
$ 783.19万 - 项目类别:
Fellowship
CAREER: Quantum Information Theory of Many-body Physics
职业:多体物理的量子信息论
- 批准号:
2337931 - 财政年份:2024
- 资助金额:
$ 783.19万 - 项目类别:
Continuing Grant
Geometric approaches to quantum many body problems
量子多体问题的几何方法
- 批准号:
DE230100829 - 财政年份:2023
- 资助金额:
$ 783.19万 - 项目类别:
Discovery Early Career Researcher Award
INTERACTIVE DYNAMICS OF MANY-BODY QUANTUM SYSTEMS
多体量子系统的交互动力学
- 批准号:
EP/X030881/1 - 财政年份:2023
- 资助金额:
$ 783.19万 - 项目类别:
Research Grant
Elements: Embedding Framework for Quantum Many-Body Simulations
元素:量子多体模拟的嵌入框架
- 批准号:
2310582 - 财政年份:2023
- 资助金额:
$ 783.19万 - 项目类别:
Standard Grant
LEAPS-MPS: Dynamics of Quantum Information in Strongly Interacting Many-Body Systems
LEAPS-MPS:强相互作用多体系统中的量子信息动力学
- 批准号:
2317030 - 财政年份:2023
- 资助金额:
$ 783.19万 - 项目类别:
Standard Grant
Many-Body Theory of Nonlinear Responses in Topological Quantum Materials
拓扑量子材料非线性响应的多体理论
- 批准号:
2889795 - 财政年份:2023
- 资助金额:
$ 783.19万 - 项目类别:
Studentship