Novel microcapsule designs and manufacturing processes

新颖的微胶囊设计和制造工艺

基本信息

  • 批准号:
    EP/V027646/1
  • 负责人:
  • 金额:
    $ 50.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

This project aims to tackle major industrial challenges, which limit the full uptake of microencapsulation technology in a broad range of areas including paints and coatings, home and personal care, agrochemicals and lubricants to name but a few. Ideal microcapsules are typically core-shell structures, of sizes in the range of micrometres, capable of retaining valuable active ingredients such as pharmaceutical drugs or fragrance oils within their core and releasing them in a controlled manner at a location and rate that is predetermined. In order to design efficient microcapsule systems, it is critical that the properties of both microcapsule core and their protective shell are well controlled and fully optimised for their specific application. This includes for example delivery of enzymes in washing powders, of pesticides for agro-chemicals, of flavours in foods, of biocides in paints/coatings and of antioxidants in cosmetics.Currently, most commercial microcapsules are spherical structures with a shell made from synthetic or bio-sourced polymers. These designs suffer from significant drawbacks, including: a) microcapsule shell porosity is often too high and does not allow for efficient retention of the active ingredients before the intended delivery - this is a significant challenge in medical applications to minimise the side effects from leaching drugs; b) microcapsule deposition and retention on the targeted surface is often too low - this leads to a very large proportion of microcapsules containing perfume oils being washed down the drain in a washing machine cycle, thus potentially causing both water contamination and higher doses needed (i.e. increased product cost); c) polymer shells are often made from synthetic non-recyclable and non-biodegradable materials, which cause environmental pollution when they unintentionally accumulate, a major current environmental safety concern currently being increasing regulated; and d) microcapsules are mostly manufactured from precursor objects in the form of emulsion droplets, which are typically produced using very energy-intensive and wasteful processes.Addressing the important challenges above is key if the large potential of microencapsulation technology is to be harnessed a) for more targeted and more efficient delivery (including the use of much lower dosages and the drastic reduction in side effects) of pesticides in agricultural fields, potent drugs in treating serious diseases for example and b) for developing new solutions in a wide variety of industries, for example via designing new energy storage devices for more efficient home insulation.On this basis, our project will combine the strength of three of the most active UK academic groups and strongly committed key industrial partners to develop solutions to these challenges, including:- Developing a low energy manufacturing process to produce the emulsion droplet precursors to microcapsules;- Designing and testing a range of alternative microcapsule shell inorganic chemistries (i.e. not organic polymers) that improve properties of current systems, including: - More robust and less permeable shells to decrease shell permeability and thus also reduce potential for undesired leaching (and side effects) of the encapsulated active ingredients; - More sustainable and biodegradable shells that do not linger in the locations they accumulate;Producing microcapsules of non-spherical shapes to improve their deposition and retention on the targeted surfaces (through increased surface area of interaction with the surfaces), thus enabling more efficient use and lower dosages of active ingredients to be achieved.The project will fund 3 post-doctoral researchers working on the various aspects discussed above via EPSRC and a combination of the academic institutions and the industrial partners will provide additional funding for 2 PhD students also working on parts of the overall project.
该项目旨在应对重大的工业挑战,这限制了在包括油漆和涂料,家庭和个人护理,农业化学和润滑剂等广泛领域中的微囊化技术的全部吸收。理想的微胶囊通常是核心壳结构,其尺寸在微米范围内,能够在其核心内保留有价值的活性成分,例如药物或香料油,并以预先确定的位置和速率以控制的方式释放它们。为了设计有效的微胶囊系统,至关重要的是,微胶囊核心及其保护性壳的性能得到了很好的控制,并且针对其特定应用进行了完全优化。这包括例如在洗涤粉中递送酶,用于农业化的农药,食物中的口味,油漆/涂料中的杀菌剂以及化妆品中的抗氧化剂的抗氧化剂。当然,大多数商业微胶囊都是由合成或生物剂制成的球形结构。这些设计具有重要的缺点,包括:a)微胶囊壳孔隙率通常太高,不允许在预定递送之前有效保留活性成分 - 这是医疗应用中的重大挑战,可以最大程度地减少浸出药物的副作用; b)微胶囊沉积和靶向表面上的保留通常太低 - 这导致很大一部分的微胶囊在洗衣机周期中含有香水油被冲入排水口的微胶囊,从而可能导致所需的水污染和更高的剂量(即增加产品成本); c)聚合物贝壳通常是由合成不可回收和不可生物降解的材料制成的,这些材料在无意识地积累时会造成环境污染,目前正在增加监管的当前主要环境安全问题; d)微胶囊主要由前体物体以乳液液滴的形式制成,通常是使用非常耗能和浪费的过程生产的。在上面的重要挑战中,如果要利用微型塑料技术的巨大潜力,则在上述重要的挑战是至关重要的。 fields, potent drugs in treating serious diseases for example and b) for developing new solutions in a wide variety of industries, for example via designing new energy storage devices for more efficient home insulation.On this basis, our project will combine the strength of three of the most active UK academic groups and strongly committed key industrial partners to develop solutions to these challenges, including:- Developing a low energy manufacturing process to produce the emulsion droplet precursors to microcapsules;-设计和测试一系列替代微胶囊无机化学(即不是改善当前系统特性的有机聚合物,包括: - 更坚固且更不可渗透性的壳,以降低壳的渗透性,从而降低了封装活性成分的不需要的浸出(和副作用)的潜力; - 在其积累的位置不会徘徊的更可持续和可生物降解的贝壳;生产非球形形状的微胶囊,以改善其对目标表面上的沉积和保留率(通过与表面相互作用的增加)(通过与表面相互作用的增加)(通过增加与表面的相互作用)(通过增加的效率研究和较低的研究)在上面进行研究。 EPSRC以及学术机构和工业合作伙伴的结合将为2名博士学位学生提供额外的资金,并从事整个项目的一部分。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuous synthesis of block copolymer nanoparticles via telescoped RAFT solution and dispersion polymerisation in a miniature CSTR cascade
通过伸缩 RAFT 溶液和微型 CSTR 级联中的分散聚合连续合成嵌段共聚物纳米颗粒
Exploring effects of polymeric stabiliser molecular weight and concentration on emulsion production via stirred cell membrane emulsification
探索聚合物稳定剂分子量和浓度对搅拌细胞膜乳化乳液生产的影响
  • DOI:
    10.1039/d3py00948c
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Manga M
  • 通讯作者:
    Manga M
Impact of high conductivity on particle transport to liquid droplets for liquid marble formation
高电导率对液体大理石形成过程中颗粒传输至液滴的影响
  • DOI:
    10.1039/d3lf00182b
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thomas C
  • 通讯作者:
    Thomas C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Olivier CAYRE其他文献

Olivier CAYRE的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

钢包底吹透气塞中费马螺旋渐变式气流通道设计及微胶囊抗热冲击机制
  • 批准号:
    52304356
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自修复防腐涂层用壳层可控微胶囊的设计构建与调控机制
  • 批准号:
    52273057
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目
自修复防腐涂层用壳层可控微胶囊的设计构建与调控机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
中空介孔SiO2装配含磷硅烷微胶囊的设计构建及其对环氧树脂阻燃抑烟研究
  • 批准号:
    22265008
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
冠状核壳结构微胶囊相变材料的导向设计与主动抑制混凝土冻融破坏机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Novel microcapsule designs and manufacturing processes
新颖的微胶囊设计和制造工艺
  • 批准号:
    EP/V027654/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50.45万
  • 项目类别:
    Research Grant
Development of functional microcapsule based on piezoelectric PVDF films
基于压电PVDF薄膜的功能微胶囊的研制
  • 批准号:
    21K04701
  • 财政年份:
    2021
  • 资助金额:
    $ 50.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Novel microcapsule designs and manufacturing processes
新颖的微胶囊设计和制造工艺
  • 批准号:
    EP/V027727/1
  • 财政年份:
    2021
  • 资助金额:
    $ 50.45万
  • 项目类别:
    Research Grant
Controlling hierarchical structure of polymer materials through rapid phase transition within non-equilibrium droplets formed in microspace
通过微空间中形成的非平衡液滴内的快速相变控制聚合物材料的分级结构
  • 批准号:
    21K04749
  • 财政年份:
    2021
  • 资助金额:
    $ 50.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Hydrogel Microcapsule for Single Cell Genomics
用于单细胞基因组学的水凝胶微胶囊的开发
  • 批准号:
    16K07224
  • 财政年份:
    2016
  • 资助金额:
    $ 50.45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了