Novel microcapsule designs and manufacturing processes
新颖的微胶囊设计和制造工艺
基本信息
- 批准号:EP/V027646/1
- 负责人:
- 金额:$ 50.45万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project aims to tackle major industrial challenges, which limit the full uptake of microencapsulation technology in a broad range of areas including paints and coatings, home and personal care, agrochemicals and lubricants to name but a few. Ideal microcapsules are typically core-shell structures, of sizes in the range of micrometres, capable of retaining valuable active ingredients such as pharmaceutical drugs or fragrance oils within their core and releasing them in a controlled manner at a location and rate that is predetermined. In order to design efficient microcapsule systems, it is critical that the properties of both microcapsule core and their protective shell are well controlled and fully optimised for their specific application. This includes for example delivery of enzymes in washing powders, of pesticides for agro-chemicals, of flavours in foods, of biocides in paints/coatings and of antioxidants in cosmetics.Currently, most commercial microcapsules are spherical structures with a shell made from synthetic or bio-sourced polymers. These designs suffer from significant drawbacks, including: a) microcapsule shell porosity is often too high and does not allow for efficient retention of the active ingredients before the intended delivery - this is a significant challenge in medical applications to minimise the side effects from leaching drugs; b) microcapsule deposition and retention on the targeted surface is often too low - this leads to a very large proportion of microcapsules containing perfume oils being washed down the drain in a washing machine cycle, thus potentially causing both water contamination and higher doses needed (i.e. increased product cost); c) polymer shells are often made from synthetic non-recyclable and non-biodegradable materials, which cause environmental pollution when they unintentionally accumulate, a major current environmental safety concern currently being increasing regulated; and d) microcapsules are mostly manufactured from precursor objects in the form of emulsion droplets, which are typically produced using very energy-intensive and wasteful processes.Addressing the important challenges above is key if the large potential of microencapsulation technology is to be harnessed a) for more targeted and more efficient delivery (including the use of much lower dosages and the drastic reduction in side effects) of pesticides in agricultural fields, potent drugs in treating serious diseases for example and b) for developing new solutions in a wide variety of industries, for example via designing new energy storage devices for more efficient home insulation.On this basis, our project will combine the strength of three of the most active UK academic groups and strongly committed key industrial partners to develop solutions to these challenges, including:- Developing a low energy manufacturing process to produce the emulsion droplet precursors to microcapsules;- Designing and testing a range of alternative microcapsule shell inorganic chemistries (i.e. not organic polymers) that improve properties of current systems, including: - More robust and less permeable shells to decrease shell permeability and thus also reduce potential for undesired leaching (and side effects) of the encapsulated active ingredients; - More sustainable and biodegradable shells that do not linger in the locations they accumulate;Producing microcapsules of non-spherical shapes to improve their deposition and retention on the targeted surfaces (through increased surface area of interaction with the surfaces), thus enabling more efficient use and lower dosages of active ingredients to be achieved.The project will fund 3 post-doctoral researchers working on the various aspects discussed above via EPSRC and a combination of the academic institutions and the industrial partners will provide additional funding for 2 PhD students also working on parts of the overall project.
该项目旨在解决主要的工业挑战,这些挑战限制了微胶囊技术在油漆和涂料、家庭和个人护理、农用化学品和润滑剂等广泛领域的全面应用。理想的微胶囊通常是核-壳结构,尺寸在微米范围内,能够在其核心内保留有价值的活性成分,如药物或香精油,并以预定的位置和速率以受控的方式释放它们。为了设计高效的微胶囊系统,至关重要的是,微胶囊核心及其保护壳的性能都得到很好的控制,并针对其特定应用进行充分优化。例如,这包括洗衣粉中的酶、农用化学品中的农药、食品中的香料、油漆/涂料中的杀菌剂和化妆品中的抗氧化剂的输送。目前,大多数商业微胶囊都是球形结构,外壳由合成或生物聚合物制成。这些设计存在明显的缺点,包括:a)微胶囊外壳孔隙度通常太高,不能在预期递送之前有效保留活性成分——这是医疗应用中最大限度地减少药物浸出副作用的重大挑战;B)微胶囊在目标表面的沉积和保留率通常太低——这导致含有香水油的微胶囊在洗衣机循环中被冲下下水道,从而可能造成水污染和更高剂量的需要(即增加产品成本);C)聚合物外壳通常由合成的不可回收和不可生物降解的材料制成,当它们无意中积累时造成环境污染,这是当前主要的环境安全问题,目前正日益受到监管;d)微胶囊主要是由乳化液液滴形式的前体物体制成的,而乳化液液滴的生产通常使用非常耗能和浪费的工艺。如果要利用微胶囊技术的巨大潜力,解决上述重要挑战至关重要:a)在农业领域更有针对性和更有效地施用农药(包括使用低得多的剂量和大幅减少副作用),例如在治疗严重疾病方面使用强效药物;b)在各种各样的工业中开发新的解决办法;例如,通过设计新的能源存储设备来提高家庭隔热的效率。在此基础上,我们的项目将结合英国三个最活跃的学术团体的力量,并坚定地承诺主要的工业合作伙伴来开发解决这些挑战的解决方案,包括:-开发一种低能耗的制造工艺来生产微胶囊的乳状液滴前体;-设计和测试一系列可替代的微胶囊外壳无机化学物质(即非有机聚合物),以改善当前系统的性能,包括:-更坚固和更低渗透性的外壳,以降低外壳的渗透性,从而也减少了被封装活性成分的不希望的浸出(和副作用)的可能性;-更可持续和可生物降解的贝壳,不会在它们积聚的地方逗留;生产非球形微胶囊,以改善其在目标表面上的沉积和保留(通过增加与表面相互作用的表面积),从而实现更有效的使用和更低的活性成分剂量。该项目将通过EPSRC资助3名从事上述各个方面工作的博士后研究人员,学术机构和工业合作伙伴的联合将为2名从事整体项目部分工作的博士生提供额外资金。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Continuous synthesis of block copolymer nanoparticles via telescoped RAFT solution and dispersion polymerisation in a miniature CSTR cascade
通过伸缩 RAFT 溶液和微型 CSTR 级联中的分散聚合连续合成嵌段共聚物纳米颗粒
- DOI:10.1039/d2re00475e
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Pittaway P
- 通讯作者:Pittaway P
Exploring effects of polymeric stabiliser molecular weight and concentration on emulsion production via stirred cell membrane emulsification
探索聚合物稳定剂分子量和浓度对搅拌细胞膜乳化乳液生产的影响
- DOI:10.1039/d3py00948c
- 发表时间:2023
- 期刊:
- 影响因子:4.6
- 作者:Manga M
- 通讯作者:Manga M
Impact of high conductivity on particle transport to liquid droplets for liquid marble formation
高电导率对液体大理石形成过程中颗粒传输至液滴的影响
- DOI:10.1039/d3lf00182b
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Thomas C
- 通讯作者:Thomas C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olivier CAYRE其他文献
Olivier CAYRE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Novel microcapsule designs and manufacturing processes
新颖的微胶囊设计和制造工艺
- 批准号:
EP/V027654/1 - 财政年份:2021
- 资助金额:
$ 50.45万 - 项目类别:
Research Grant
Development of functional microcapsule based on piezoelectric PVDF films
基于压电PVDF薄膜的功能微胶囊的研制
- 批准号:
21K04701 - 财政年份:2021
- 资助金额:
$ 50.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Novel microcapsule designs and manufacturing processes
新颖的微胶囊设计和制造工艺
- 批准号:
EP/V027727/1 - 财政年份:2021
- 资助金额:
$ 50.45万 - 项目类别:
Research Grant
Controlling hierarchical structure of polymer materials through rapid phase transition within non-equilibrium droplets formed in microspace
通过微空间中形成的非平衡液滴内的快速相变控制聚合物材料的分级结构
- 批准号:
21K04749 - 财政年份:2021
- 资助金额:
$ 50.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Hydrogel Microcapsule for Single Cell Genomics
用于单细胞基因组学的水凝胶微胶囊的开发
- 批准号:
16K07224 - 财政年份:2016
- 资助金额:
$ 50.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Elucidation of propagating micro-shock wave induced by ultra-short time pulse laser and its application to microcapsule for regenerative medicine
超短时脉冲激光诱导微冲击波传播及其在再生医学微胶囊中的应用研究
- 批准号:
15H03921 - 财政年份:2015
- 资助金额:
$ 50.45万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Dual-mode MRI for in vivo sensing of microcapsule stability and biocompatibility
用于微胶囊稳定性和生物相容性体内传感的双模式 MRI
- 批准号:
9124874 - 财政年份:2015
- 资助金额:
$ 50.45万 - 项目类别:
An application of integrated microcapsule technology for preparation of cell-specific scaffold
集成微胶囊技术在细胞特异性支架制备中的应用
- 批准号:
26560236 - 财政年份:2014
- 资助金额:
$ 50.45万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of catalyst-loaded microcapsule reactor for light driven reactions
用于光驱动反应的负载催化剂的微胶囊反应器的开发
- 批准号:
26420777 - 财政年份:2014
- 资助金额:
$ 50.45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of controlling method of microcapsule disintegration for regenerative medicine by underwater shock waves
水下冲击波再生医学微胶囊崩解控制方法研究进展
- 批准号:
25630054 - 财政年份:2013
- 资助金额:
$ 50.45万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research














{{item.name}}会员




