Beyond One Solution in Combinatorial Optimisation
组合优化中的超越一种解决方案
基本信息
- 批准号:EP/V032305/1
- 负责人:
- 金额:$ 173.76万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Which characteristics should be used to determine whether a patient is offered routine cancer screening? Are there two or three qualitatively different types of heart failure? Which journeys should be forbidden to restrict the spread of an infectious disease? Data-driven approaches to answering any of these questions - as well as many others in the field of digital health - typically involve searching for a single mathematical object which is optimal with respect to some criterion. For example, we might aim to partition patients into a fixed number of groups or "clusters" in a way that minimises the maximum "difference" in the characteristics of patients assigned to the same cluster.However, there will often be many solutions that are equally good with respect to our chosen criterion, in which case it is misleading to consider just a single example: if there are many optimal ways to split our patient group into clusters, and there is little agreement between these optimal solutions about which patients belong to the same cluster, then we should not draw conclusions based on just a single optimal solution. It is therefore important to find out more about the whole set of good solutions.Unfortunately, in most settings, even finding a single optimal solution is a very computationally challenging problem, and finding all good solutions (or even estimating how many of these there are) is even more difficult. This project aims to advance our understanding of how to design efficient algorithms that can (at least approximately) find all good solutions, count their number, or sample a good solution uniformly at random. To do this we will develop new techniques by drawing on two areas of computational complexity - parameterised complexity and approximate counting - whose intersection has not yet been properly explored. This will make it feasible to extract information about the entire space of good representative structures in many more settings, providing complete and fully explainable answers to our original healthcare-inspired questions as well as many others.
应使用哪些特征来确定患者是否接受常规癌症筛查?是否存在两种或三种性质不同的心力衰竭类型?应禁止哪些旅行以限制传染病的传播?回答这些问题以及数字健康领域的许多其他问题的数据驱动方法通常涉及搜索在某些标准方面最佳的单个数学对象。例如,我们的目标可能是将患者划分为固定数量的组或“簇”,以最小化分配到同一簇的患者特征的最大“差异”。但是,通常会有许多解决方案对于我们选择的标准来说同样好,在这种情况下,仅考虑一个示例会产生误导:如果有许多最佳方法将我们的患者组划分为簇,并且这些最佳解决方案之间几乎没有一致性 关于哪些患者属于同一簇,那么我们不应该仅根据单个最佳解决方案得出结论。因此,更多地了解整套好的解决方案非常重要。不幸的是,在大多数情况下,即使找到单个最佳解决方案,在计算上也是一个非常具有挑战性的问题,而找到所有好的解决方案(甚至估计其中有多少个)则更加困难。该项目旨在加深我们对如何设计有效算法的理解,这些算法可以(至少大约)找到所有好的解决方案,计算它们的数量,或者随机均匀地采样一个好的解决方案。为此,我们将利用计算复杂性的两个领域(参数化复杂性和近似计数)来开发新技术,这两个领域的交集尚未得到适当探索。这将使在更多环境中提取有关良好代表性结构的整个空间的信息成为可能,为我们最初的医疗保健启发问题以及许多其他问题提供完整且完全可解释的答案。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fair Division of a Graph into Compact Bundles
将图公平划分为紧凑束
- DOI:10.24963/ijcai.2023/316
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Madathil J
- 通讯作者:Madathil J
Counting Subgraphs in Somewhere Dense Graphs
计算密集图中的子图
- DOI:10.4230/lipics.itcs.2023.27
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Bressan M.
- 通讯作者:Bressan M.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kitty Meeks其他文献
Approximately Counting and Sampling Small Witnesses Using a Colorful Decision Oracle
使用彩色决策预言机对小见证人进行近似计数和采样
- DOI:
10.1137/19m130604x - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Holger Dell;John Lapinskas;Kitty Meeks - 通讯作者:
Kitty Meeks
Reconstructing the degree sequence of a sparse graph from a partial deck
- DOI:
10.1016/j.jctb.2022.07.004 - 发表时间:
2022-11-01 - 期刊:
- 影响因子:
- 作者:
Carla Groenland;Tom Johnston;Andrey Kupavskii;Kitty Meeks;Alex Scott;Jane Tan - 通讯作者:
Jane Tan
Temporal Graphs: Structure, Algorithms, Applications (Dagstuhl Seminar 21171)
时序图:结构、算法、应用(Dagstuhl 研讨会 21171)
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
A. Casteigts;Kitty Meeks;G. B. Mertzios;R. Niedermeier - 通讯作者:
R. Niedermeier
The parameterised complexity of counting even and odd induced subgraphs
计算偶数和奇数诱导子图的参数化复杂度
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:1.1
- 作者:
M. Jerrum;Kitty Meeks - 通讯作者:
Kitty Meeks
The interactive sum choice number of graphs
- DOI:
10.1016/j.dam.2021.01.003 - 发表时间:
2021-03-31 - 期刊:
- 影响因子:
- 作者:
Marthe Bonamy;Kitty Meeks - 通讯作者:
Kitty Meeks
Kitty Meeks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kitty Meeks', 18)}}的其他基金
Multilayer Algorithmics to Leverage Graph Structure (MultilayerALGS)
利用图结构的多层算法 (MultilayerALGS)
- 批准号:
EP/T004878/1 - 财政年份:2020
- 资助金额:
$ 173.76万 - 项目类别:
Research Grant
相似国自然基金
相似海外基金
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 173.76万 - 项目类别:
Standard Grant
Collaborative Research: Combinatorial solution processing of optical phase change materials
合作研究:光学相变材料的组合溶液加工
- 批准号:
2225968 - 财政年份:2022
- 资助金额:
$ 173.76万 - 项目类别:
Standard Grant
Collaborative Research: Combinatorial solution processing of optical phase change materials
合作研究:光学相变材料的组合溶液加工
- 批准号:
2225967 - 财政年份:2022
- 资助金额:
$ 173.76万 - 项目类别:
Standard Grant
Combinatorial analysis of the solution spaces of systems of polynomial equations
多项式方程组解空间的组合分析
- 批准号:
18K11155 - 财政年份:2018
- 资助金额:
$ 173.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical programming techniques for the solution of hard combinatorial optimization problems arising in transportation
用于解决运输中出现的硬组合优化问题的数学编程技术
- 批准号:
435824-2013 - 财政年份:2018
- 资助金额:
$ 173.76万 - 项目类别:
Discovery Grants Program - Individual
Mathematical programming techniques for the solution of hard combinatorial optimization problems arising in transportation
用于解决运输中出现的硬组合优化问题的数学编程技术
- 批准号:
435824-2013 - 财政年份:2017
- 资助金额:
$ 173.76万 - 项目类别:
Discovery Grants Program - Individual
Mathematical programming techniques for the solution of hard combinatorial optimization problems arising in transportation
用于解决运输中出现的硬组合优化问题的数学编程技术
- 批准号:
435824-2013 - 财政年份:2016
- 资助金额:
$ 173.76万 - 项目类别:
Discovery Grants Program - Individual
Mathematical programming techniques for the solution of hard combinatorial optimization problems arising in transportation
用于解决运输中出现的硬组合优化问题的数学编程技术
- 批准号:
435824-2013 - 财政年份:2015
- 资助金额:
$ 173.76万 - 项目类别:
Discovery Grants Program - Individual
Development of new evolutionary multi-criterion optimization approaches for very large scale combinatorial optimization problems and its solution analysis
针对超大规模组合优化问题的新型进化多准则优化方法的开发及其解分析
- 批准号:
26330269 - 财政年份:2014
- 资助金额:
$ 173.76万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical programming techniques for the solution of hard combinatorial optimization problems arising in transportation
用于解决运输中出现的硬组合优化问题的数学编程技术
- 批准号:
435824-2013 - 财政年份:2014
- 资助金额:
$ 173.76万 - 项目类别:
Discovery Grants Program - Individual