Compressive Population Health: Cost-Effective Profiling of Prevalence for Multiple Non-Communicable Diseases via Health Data Science

压缩人口健康:通过健康数据科学对多种非传染性疾病的患病率进行经济有效的分析

基本信息

  • 批准号:
    EP/V043544/1
  • 负责人:
  • 金额:
    $ 28.78万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

With a growing ageing population and changes in lifestyles, non-communicable diseases (NCD), e.g. heart disease, diabetes, and cancer, have become extremely prevalent in our society, and the situation is more challenging in UK compared to other developed countries. Population health monitoring is fundamental block for public health services, and profiling population-scale prevalence of multiple NCD across different regions (e.g., building the spatially fine-grained morbidity rate map) is one of the most important tasks. However, traditional public health data collection and prevalence profiling approaches, such as clinic-visit-based data integration and health surveys, are often very costly and time-consuming. This project proposes a novel paradigm, called compressive population health (CPH for short), to reduce the data collection cost during the profiling of prevalence to the maximum extent. The basic idea CPH is that a subset of areas is intelligently selected for data collection and population health profiling in the traditional way, while leveraging inherent data correlations to perform data inference for the rest of the areas. CPH is facilitated by the exploitation of the following types of inherent data correlations found by epidemiologists. (a) Intra-Disease Spatial Correlations. That is, regions are more similar in the prevalence rate of some diseases when they are neighbouring, or share certain common environmental, socioeconomic, and demographical attributes. (b) Inter-Disease Correlations. Multimorbidity, commonly defined as the co-presence of two or more chronic conditions, demonstrates that statistics for different types of disease may also correlate with each other. For example, regions with higher obesity rate are more likely to have higher rates of heart disease and cancers. In order to realize this idea, this project develops three technical work packages to accomplish the following technical goals: (1) Investigate and extract latent data correlations and further utilize them to build learning models for prevalence inference on the target geographical grids. (2) Design intelligent algorithms for selecting traditional-sensed areas for each disease with multi-objective optimization goals including cost, reliability, and latency. (3) Evaluate and interpret the inference results of prevalence rate to ensure the reliability and robustness of the approach. The proposed CPH is a novel solution to a public health data collection challenge enabled by data science and artificial intelligence. It opens the door for a disruptive population health monitoring paradigm with potential significant cost reductions for public health authorities. By closely working with partners from public health sector, including NHS England and Public Health at Warwickshire County Council, we will evaluate the feasibility of this approach based on multiple public health datasets together with relevant demographic/geographic statistics in the same regions.
随着人口老龄化和生活方式的变化,非传染性疾病(NCD),如心脏病,糖尿病和癌症,在我们的社会中变得非常普遍,与其他发达国家相比,英国的情况更具挑战性。人口健康监测是公共卫生服务的基本模块,并在不同地区(例如,建立空间上细粒度的发病率地图)是最重要的任务之一。然而,传统的公共卫生数据收集和流行情况分析方法,如基于诊所访问的数据整合和健康调查,往往非常昂贵和耗时。本项目提出了一种新的模式,称为压缩人口健康(简称CPH),以减少数据收集成本在流行病学的剖析在最大程度上。CPH的基本思想是,以传统方式智能地选择一个区域子集进行数据收集和人口健康分析,同时利用固有的数据相关性对其余区域进行数据推断。利用流行病学家发现的以下类型的固有数据相关性促进了CPH。(a)疾病内部空间相关性。也就是说,当区域相邻或具有某些共同的环境、社会经济和人口特征时,它们在某些疾病的流行率方面更相似。(b)疾病间的相关性。多发性硬化症,通常定义为两种或多种慢性疾病的共存,表明不同类型疾病的统计数据也可能相互关联。例如,肥胖率较高的地区更有可能有较高的心脏病和癌症发病率。为了实现这一想法,本项目开发了三个技术工作包,以实现以下技术目标:(1)调查和提取潜在的数据相关性,并进一步利用它们来建立学习模型,用于在目标地理网格上进行流行推断。(2)设计智能算法,为每种疾病选择传统感知区域,并实现多目标优化目标,包括成本、可靠性和延迟。(3)对患病率的推断结果进行评估和解释,以确保该方法的可靠性和稳健性。拟议的CPH是数据科学和人工智能支持的公共卫生数据收集挑战的新解决方案。它为颠覆性的人口健康监测模式打开了大门,可能会大大降低公共卫生当局的成本。通过与公共卫生部门的合作伙伴密切合作,包括NHS英格兰和沃里克郡理事会的公共卫生,我们将根据多个公共卫生数据集以及相同地区的相关人口/地理统计数据评估这种方法的可行性。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quality-Guaranteed and Cost-Effective Population Health Profiling: A Deep Active Learning Approach
Completing Missing Prevalence Rates for Multiple Chronic Diseases by Jointly Leveraging Both Intra- and Inter-Disease Population Health Data Correlations
  • DOI:
    10.1145/3442381.3449811
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yujie Feng;Jiangtao Wang;Yasha Wang;A. Helal
  • 通讯作者:
    Yujie Feng;Jiangtao Wang;Yasha Wang;A. Helal
Mobile Crowdsourcing - From Theory to Practice
移动众包 - 从理论到实践
  • DOI:
    10.1007/978-3-031-32397-3_15
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wang J
  • 通讯作者:
    Wang J
Deep Compressed Sensing based Data Imputation for Urban Environmental Monitoring
  • DOI:
    10.1145/3599236
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Qingyi Chang;Dan Tao;Jiangtao Wang;Ruipeng Gao
  • 通讯作者:
    Qingyi Chang;Dan Tao;Jiangtao Wang;Ruipeng Gao
Human-in-the-loop machine learning with applications for population health
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiangtao Wang其他文献

A teaching–learning-based optimization algorithm with producer–scrounger model for global optimization
一种基于教-学的优化算法,具有用于全局优化的生产者-搜寻器模型
  • DOI:
    10.1007/s00500-014-1298-5
  • 发表时间:
    2014-05
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Debao Chen;Feng Zou;Jiangtao Wang;Wujie Yuan
  • 通讯作者:
    Wujie Yuan
Mechanical properties and microstructural response of 2A14 aluminum alloy subjected to multiple laser shock peening impacts
多次激光喷丸冲击下2A14铝合金的力学性能和显微组织响应
  • DOI:
    10.1016/j.vacuum.2019.03.058
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Jian Wang;Yalin Lu;Dongshuai Zhou;Lingyan Sun;Li Xie;Jiangtao Wang
  • 通讯作者:
    Jiangtao Wang
Development of High Efficient and Low Toxic Oil Spill Dispersants based on Sorbitol Derivants Nonionic Surfactants and Glycolipid Biosurfactants
基于山梨醇衍生物非离子表面活性剂和糖脂生物表面活性剂开发高效低毒溢油分散剂
  • DOI:
    10.4236/jep.2013.41b004
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dandan Song;Shengkang Liang;Qianqian Zhang;Jiangtao Wang;Limei Yan
  • 通讯作者:
    Limei Yan
Enhancing Online Epidemic Supervising System by Compartmental and GRU Fusion Model
分区与GRU融合模式强化在线疫情监测系统
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junyi Ma;Xuan Wang;Yasha Wang;Jiangtao Wang;Xu Chu;Junfeng Zhao
  • 通讯作者:
    Junfeng Zhao
Underwater Scene Segmentation by Deep Neural Network
深度神经网络水下场景分割

Jiangtao Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

濒危植物翅果油树Meta-population及其形成机理的研究
  • 批准号:
    30470296
  • 批准年份:
    2004
  • 资助金额:
    8.0 万元
  • 项目类别:
    面上项目

相似海外基金

Flok Health: Developing a pocket physiotherapist to deliver personalised healthcare at population scale
Flok Health:开发袖珍物理治疗师以在人口规模上提供个性化医疗保健
  • 批准号:
    10100082
  • 财政年份:
    2024
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Collaborative R&D
Developing and Visualising a Retrieval-Augmented Deep Learning Model for Population Health Management
开发和可视化用于人口健康管理的检索增强深度学习模型
  • 批准号:
    2905946
  • 财政年份:
    2024
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Studentship
Assessment of IUCN Red Listed Barbary macaque population health and numbers following multiple natural disasters within Morocco
对摩洛哥境内多次自然灾害后世界自然保护联盟红色名录巴巴里猕猴种群健康和数量的评估
  • 批准号:
    NE/Y00647X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Research Grant
Health Research from Home: advancing population research using smartphones and wearables
家庭健康研究:使用智能手机和可穿戴设备推进人口研究
  • 批准号:
    MR/Y003624/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Research Grant
Director of population health improvement network of clusters
集群人口健康改善网络主任
  • 批准号:
    MR/Y033914/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Research Grant
A comprehensive assessment of the long-term effects of COVID-19 on population health in Japan
全面评估 COVID-19 对日本人口健康的长期影响
  • 批准号:
    24K02676
  • 财政年份:
    2024
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Improving reproductive population health through patient-oriented health policy and epidemiological research
通过以患者为中心的卫生政策和流行病学研究改善生殖人口健康
  • 批准号:
    467619
  • 财政年份:
    2024
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Salary Programs
MISTRAL a toolkit for dynaMic health Impact analysiS to predicT disability-Related costs in the Aging population based on three case studies of steeL-industry exposed areas in Europe
MISTRAL 动态健康影响分析工具包,基于欧洲钢铁行业暴露地区的三个案例研究,预测老龄化人口中与残疾相关的成本
  • 批准号:
    10063764
  • 财政年份:
    2023
  • 资助金额:
    $ 28.78万
  • 项目类别:
    EU-Funded
Our health counts: population-based measures of urban Indigenous health determinants, health status, and health care access across two cities in New Brunswick
我们的健康很重要:新不伦瑞克省两个城市的城市土著健康决定因素、健康状况和医疗保健获取情况的基于人口的衡量标准
  • 批准号:
    489076
  • 财政年份:
    2023
  • 资助金额:
    $ 28.78万
  • 项目类别:
    Operating Grants
Identifying structural variants influencing human health in population cohorts
识别影响人群健康的结构变异
  • 批准号:
    10889519
  • 财政年份:
    2023
  • 资助金额:
    $ 28.78万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了