''Mechanically-intelligent'' Intra-operative Tissue Assessment for Robot-Assisted Surgery (MIRAS)
机器人辅助手术(MIRAS)的“机械智能”术中组织评估
基本信息
- 批准号:EP/V047612/1
- 负责人:
- 金额:$ 158.68万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Intra-operational tissue assessment is a key enabling technology for minimally invasive surgery. Surgeons operating along a "keyhole" or similar means of access for minimally invasive surgery need to identify different structures or diseased areas, even when these all may look similar. This work is aimed at identifying the resection margin in cancer surgery, to allow the removal of a tumour together with a margin which is just enough to ensure complete cancer excision, but without unnecessary excess tissue removal. Currently, such a surgical margin is identified using a combination of the surgeon's experience, images of various kinds taken prior to the operation coupled with any visual observations, or tactile 'feel' in the scenario of open surgery, that the surgeon can make during the operation. Ultimate confirmation of the surgical margin relies on post-operative histopathology, where the removed tissue is assessed microscopically. Only then, will it be known if the removal has been successful or if further surgery and/or more aggressive post-operative treatment is required. These challenges are particularly acute in surgical removal of tumours from the rectum and some pelvic organs, where wider surgical excision is constrained by close proximity of anatomical structures with high functional importance, e.g. nerves and vasculature supplying bladder, bowel, sexual organs and lower limbs. The development of minimally invasive techniques (such as laparoscopy or operations along body ducts, such as in the rectum or colon) have removed surgical 'feel' for tissue characteristics, including assessment of surgical margin. This highlights an unmet clinical need for a quantitative, robust, reliable and evidence-based method of determining the optimal surgical margin and providing feedback to the surgeon in a way that it can be used to make decisions during the operation.Robot-Assisted Surgery (RAS) is the next development in minimally invasive surgery and has seen rapid development in treatment of a wide variety of conditions. It offers improved clinical accuracy by giving surgeons better control of instruments and providing features such as 3D visualisation. Such developments are particularly useful in confined spaces such as the pelvis and rectum. So far, RAS has found limited application in oncological surgery, mostly because current RAS systems rely almost entirely on visual feedback, and do not provide support for clinical decision making. This work aims to provide a novel function in RAS to enhance intra-operative clinical decision making. This technology would accelerate development of RAS in many types of visceral and solid-organ surgery where visual feedback is limited or inadequate to determine surgical margins reliably.This partnership brings together 4 distinct and complementary engineering groups with two clinical specialisms and is supported by two industries, an SME in the medical sensors area and a manufacturer of surgical robots. The group will focus on two principal aims: 1. to devise a microfabricated probe deployable via a standard minimally invasive surgery instrument capable of making intra-operative mechanical measurements on the tissue surface. 2. to establish data modelling methods in order to process the real-time measurement data to produce quantitative assessment of surgical margin as intra-operative feedback to the surgeon.The approach will be developed in a staged series of trials, including on ex vivo human tissue and in vivo animal models, with ultimate demonstration in a surgical environment. Through the work, the partnership expects to develop a unique and future-proof 'RAS-made-smarter' technology for applications in intra-operative identification of tumours and tumour margins and, by extension, in other surgical areas.
术中组织评估是微创手术的关键支持技术。沿着“钥匙孔”或类似的微创手术进入方式进行手术的外科医生需要识别不同的结构或患病区域,即使这些看起来很相似。这项工作的目的是确定癌症手术中的切除边缘,以便在切除肿瘤的同时保留足以确保完全切除癌症的边缘,但又不会切除不必要的多余组织。目前,这种手术边缘是通过结合外科医生的经验、手术前拍摄的各种图像以及外科医生在手术期间可以在开放式手术场景中做出的任何视觉观察或触觉“感觉”来确定的。手术切缘的最终确认依赖于术后组织病理学,其中通过显微镜评估切除的组织。只有这样,才能知道切除是否成功,或者是否需要进一步手术和/或更积极的术后治疗。这些挑战在从直肠和一些盆腔器官中手术切除肿瘤时尤其严重,其中更广泛的手术切除受到具有高度功能重要性的解剖结构的紧密限制,例如,供应膀胱、肠、性器官和下肢的神经和脉管系统。微创技术(例如腹腔镜检查或沿身体管道(例如直肠或结肠)进行的手术)的发展消除了对组织特征的手术“感觉”,包括手术切缘的评估。这突显了临床对定量、稳健、可靠和基于证据的方法的需求尚未得到满足,该方法用于确定最佳手术切缘并向外科医生提供反馈,以便在手术期间做出决策。机器人辅助手术 (RAS) 是微创手术的下一个发展,在多种疾病的治疗中得到了快速发展。它使外科医生能够更好地控制器械并提供 3D 可视化等功能,从而提高临床准确性。这种发展在骨盆和直肠等有限空间中特别有用。迄今为止,RAS在肿瘤手术中的应用有限,主要是因为当前的RAS系统几乎完全依赖于视觉反馈,并且不为临床决策提供支持。这项工作旨在提供 RAS 的新功能,以增强术中临床决策。这项技术将加速 RAS 在许多类型的内脏和实体器官手术中的发展,在这些手术中,视觉反馈有限或不足以可靠地确定手术切缘。这种合作伙伴关系汇集了 4 个不同且互补的工程团队,拥有两个临床专业,并得到两个行业的支持,即医疗传感器领域的中小企业和手术机器人制造商。该小组将重点关注两个主要目标:1.设计一种可通过标准微创手术仪器部署的微型探针,能够在组织表面进行术中机械测量。 2. 建立数据建模方法,处理实时测量数据,生成手术切缘的定量评估,作为术中反馈给外科医生。该方法将通过一系列分阶段的试验开发,包括体外人体组织和体内动物模型,并最终在手术环境中进行演示。通过这项工作,该合作伙伴希望开发一种独特且面向未来的“RAS 变得更智能”技术,用于术中识别肿瘤和肿瘤边缘,并扩展至其他外科领域。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational homogenization of histological microstructures in human prostate tissue: Heterogeneity, anisotropy and tension-compression asymmetry
- DOI:10.1002/cnm.3758
- 发表时间:2023-07-21
- 期刊:
- 影响因子:2.1
- 作者:Anderson,Calum;Ntala,Chara;Chen,Yuhang
- 通讯作者:Chen,Yuhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuhang Chen其他文献
Layered Double Hydroxides-Based Mixed Metal Oxides: Development of Novel Structured Sorbents for CO2 Capture Applications.
基于层状双氢氧化物的混合金属氧化物:开发用于二氧化碳捕获应用的新型结构吸附剂。
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:9.5
- 作者:
M. Veerabhadrappa;M. Maroto;Yuhang Chen;S. García - 通讯作者:
S. García
Visibility of subsurface nanostructures in scattering-type scanning near-field optical microscopy imaging
散射型扫描近场光学显微镜成像中地下纳米结构的可见性
- DOI:
10.1364/oe.386713 - 发表时间:
2020 - 期刊:
- 影响因子:3.8
- 作者:
Wenhao Zhang;Yuhang Chen - 通讯作者:
Yuhang Chen
Crystal structure of a staphylokinase variant.
葡萄球菌激酶变体的晶体结构。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Yuhang Chen;Gang Song;Fan Jiang;Liang Feng;Xaioxuan Zhang;Yi Ding;Mark Bartlam;Ao Yang;Xiang Ma;Sheng Ye;Yiwei Liu;Hong Tang;Houyan Song;Zihe Rao - 通讯作者:
Zihe Rao
Type synthesis and analysis of parallel mechanisms with sub-closed-loops
子闭环并联机构的类型综合与分析
- DOI:
10.1016/j.mechmachtheory.2017.09.022 - 发表时间:
2018-02 - 期刊:
- 影响因子:5.2
- 作者:
Xingyu Zhao;Tieshi Zhao;Chang Wang;Xing Tian;Yuhang Chen - 通讯作者:
Yuhang Chen
A Conv -Transformer network for heart rate estimation using ballistocardiographic signals
使用心冲击描计信号估计心率的 Conv-Transformer 网络
- DOI:
10.1016/j.bspc.2022.104302 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Miao Zhang;Lishen Qiu;Yuhang Chen;Shuchen Yang;Zhiming Zhang;Lirong Wang - 通讯作者:
Lirong Wang
Yuhang Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuhang Chen', 18)}}的其他基金
Design Optimisation of Tissue Scaffolds Using Patient-specific and In Vivo Criteria
使用患者特异性和体内标准优化组织支架的设计
- 批准号:
EP/N006089/1 - 财政年份:2016
- 资助金额:
$ 158.68万 - 项目类别:
Research Grant
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 158.68万 - 项目类别:
Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
- 批准号:
2342574 - 财政年份:2024
- 资助金额:
$ 158.68万 - 项目类别:
Standard Grant
I-Corps: Intelligent Hydroponics Growing Platform for Sustainable Agriculture
I-Corps:可持续农业的智能水培种植平台
- 批准号:
2345854 - 财政年份:2024
- 资助金额:
$ 158.68万 - 项目类别:
Standard Grant
SBIR Phase II: Intelligent Language Learning Environment
SBIR第二阶段:智能语言学习环境
- 批准号:
2335265 - 财政年份:2024
- 资助金额:
$ 158.68万 - 项目类别:
Cooperative Agreement
Intelligent cryo-electron microscopy of G protein-coupled receptors
G 蛋白偶联受体的智能冷冻电子显微镜
- 批准号:
23K23818 - 财政年份:2024
- 资助金额:
$ 158.68万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Active Integrated Antenna for Intelligent Arrays in 6G Non-Terrestrial Networks
用于 6G 非地面网络智能阵列的有源集成天线
- 批准号:
EP/Y003144/1 - 财政年份:2024
- 资助金额:
$ 158.68万 - 项目类别:
Research Grant
Intelligent Breast Cancer DiagnOsis and MonItoring Therapeutic Response Training Network (CanDoIt)
智能乳腺癌诊断和监测治疗反应训练网络(CanDoIt)
- 批准号:
EP/Y03693X/1 - 财政年份:2024
- 资助金额:
$ 158.68万 - 项目类别:
Research Grant
RII Track-4:NSF: Automated Design and Innovation of Chemical Production Processes with Intelligent Computing
RII Track-4:NSF:利用智能计算进行化学品生产过程的自动化设计和创新
- 批准号:
2327303 - 财政年份:2024
- 资助金额:
$ 158.68万 - 项目类别:
Standard Grant
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
- 批准号:
24K14913 - 财政年份:2024
- 资助金额:
$ 158.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
InTarget: An intelligent signature for magnetic control
InTarget:磁力控制的智能签名
- 批准号:
EP/X039056/1 - 财政年份:2024
- 资助金额:
$ 158.68万 - 项目类别:
Research Grant














{{item.name}}会员




