Integrating hospital outpatient letters into the healthcare data space

将医院门诊信件整合到医疗保健数据空间中

基本信息

  • 批准号:
    EP/V047949/1
  • 负责人:
  • 金额:
    $ 97.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The importance of analysing health data collected as part of clinical care and stored in electronic health records is well-established. This has led to vital research about the occurrence and progression of disease, treatment effectiveness and safety, and health service delivery. The current Covid-19 pandemic has demonstrated the public health need to efficiently use data collected at the point of care to rapidly understand patterns, risk factors and outcomes of emerging diseases. Much of this work comes from primary care electronic health records, where general practitioners (GPs) enter and use structured, coded healthcare data. The picture in hospitals, however, is very different. One in four people in the UK live with one or more long-term conditions like cardiovascular diseases, chronic respiratory diseases, type 2 diabetes, arthritis and cancer, which account for 70% of the NHS budget. Specialised opinion about management of long-term conditions (LTCs) is provided through hospital outpatient care. Data and insight from outpatient clinics, however, is almost entirely absent. There is, surprisingly, no national system for recording diagnoses in hospital outpatient clinics. Information about key clinical events is instead recorded in outpatient letters, which are primarily used to communicate with patients and GPs. The ways in which letters are written and their sensitive content mean that they are not available for larger-scale "secondary use", i.e. to support clinical practice, research or service improvement. For example, shielding for the current pandemic relied on hospital clinical teams going through patient letters manually to identify those who needed shielding based on free-text information about diagnoses and medications, with clear time constraints and risks to under- and over-shield patients. Natural language processing (NLP) and text mining develop computer algorithms to automatically extract relevant information from free-text documents. This project will establish a partnership between academia, secondary care and industry to develop a standards-based information management framework to safely unlock information stored in outpatient letters, link it with other health data and demonstrate its impact and benefits through two case studies. We will develop new methods to extract key clinical events from letters and represent their details (e.g. medication used, duration of symptoms) in a computerised form so that it can be easily accessed. In doing so, we will use the NHS-adopted standards so that the outpatient letters can be linked to other hospital databases and do not live in their own silo. The protection of sensitive data that potentially appear in outpatient data is a prime concern, so we will develop clear rules on who and how can access such data, in particular considering that third parties (e.g. industry) may need to access that data for developing their tools. These rules will be developed in a close collaboration between patient representatives, clinicians and specialists to ensure safeguards, public trust and transparency of decision making. We will demonstrate the potential impact of the proposed methods through two case studies with our clinical and business partners. Our first case study will demonstrate how the proposed models can assist in timely, efficient, dynamic and transparent identification of patients for shielding in a pandemic, or for vaccination prioritisation. In the second case study, we will illustrate how the same information can be used address important gaps in our knowledge about health and care, including, for example, disease prevalence and drug utilisation patterns. All outputs will be developed in a way that can be scaled beyond the single clinical site and single speciality.
分析作为临床护理的一部分收集并存储在电子健康记录中的健康数据的重要性是公认的。这导致了关于疾病发生和进展、治疗有效性和安全性以及卫生服务提供的重要研究。当前的Covid-19大流行表明,公共卫生需要有效利用在护理点收集的数据,以快速了解新发疾病的模式、风险因素和结果。大部分工作来自初级保健电子健康记录,全科医生(gp)在其中输入并使用结构化的编码医疗保健数据。然而,医院的情况却大不相同。在英国,四分之一的人患有一种或多种长期疾病,如心血管疾病、慢性呼吸系统疾病、2型糖尿病、关节炎和癌症,这些疾病占NHS预算的70%。通过医院门诊提供关于长期疾病(LTCs)管理的专业意见。然而,来自门诊诊所的数据和见解几乎完全缺失。令人惊讶的是,在医院门诊没有一个全国性的诊断记录系统。关键临床事件的信息被记录在门诊信件中,主要用于与患者和全科医生沟通。信件的书写方式及其敏感内容意味着它们不能用于更大规模的“二次使用”,即支持临床实践、研究或服务改进。例如,对当前大流行的屏蔽依赖于医院临床团队根据有关诊断和药物的自由文本信息,手动浏览患者信件,以确定需要屏蔽的人,并且有明确的时间限制以及对屏蔽不足和过度的患者的风险。自然语言处理(NLP)和文本挖掘开发了从自由文本文档中自动提取相关信息的计算机算法。该项目将在学术界、二级保健和工业界之间建立伙伴关系,以制定一个基于标准的信息管理框架,安全地解锁储存在门诊信函中的信息,将其与其他健康数据联系起来,并通过两个案例研究展示其影响和效益。我们将开发新的方法,从信件中提取关键的临床事件,并以计算机形式表示其细节(例如,使用的药物,症状持续时间),以便于访问。在这样做的过程中,我们将使用nhs采用的标准,使门诊信件可以与其他医院的数据库连接,而不是生活在自己的孤岛中。对门诊数据中可能出现的敏感数据的保护是一个主要问题,因此我们将制定明确的规则,规定谁以及如何访问这些数据,特别是考虑到第三方(例如行业)可能需要访问这些数据以开发他们的工具。这些规则将在患者代表、临床医生和专家之间的密切合作下制定,以确保保障措施、公众信任和决策的透明度。我们将通过与临床和商业合作伙伴的两个案例研究来展示拟议方法的潜在影响。我们的第一个案例研究将展示拟议的模型如何有助于及时、有效、动态和透明地识别患者,以便在大流行中进行屏蔽或优先接种疫苗。在第二个案例研究中,我们将说明如何利用同样的信息解决我们在卫生和保健知识方面的重要差距,例如,包括疾病流行和药物利用模式。所有产出将以一种可扩展的方式开发,超越单一临床地点和单一专业。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding Views Around the Creation of a Consented, Donated Databank of Clinical Free Text to Develop and Train Natural Language Processing Models for Research: Focus Group Interviews With Stakeholders (Preprint)
了解围绕创建经同意、捐赠的临床自由文本数据库以开发和训练研究用自然语言处理模型的观点:与利益相关者的焦点小组访谈(预印本)
  • DOI:
    10.2196/preprints.45534
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fitzpatrick N
  • 通讯作者:
    Fitzpatrick N
Neural machine translation of clinical text: an empirical investigation into multilingual pre-trained language models and transfer-learning
  • DOI:
    10.3389/fdgth.2024.1211564
  • 发表时间:
    2024-02-26
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Han,Lifeng;Gladkoff,Serge;Nenadic,Goran
  • 通讯作者:
    Nenadic,Goran
MedTem2.0: Prompt-based Temporal Classification of Treatment Events from Discharge Summaries
  • DOI:
    10.18653/v1/2023.acl-srw.27
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yang Cui;Lifeng Han;G. Nenadic
  • 通讯作者:
    Yang Cui;Lifeng Han;G. Nenadic
Topic Modelling of Swedish Newspaper Articles about Coronavirus: a Case Study using Latent Dirichlet Allocation Method
关于冠状病毒的瑞典报纸文章的主题建模:使用潜在狄利克雷分配方法的案例研究
  • DOI:
    10.48550/arxiv.2301.03029
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Griciute B
  • 通讯作者:
    Griciute B
Exploring the Value of Pre-trained Language Models for Clinical Named Entity Recognition
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Goran Nenadic其他文献

AlphaMWE-Arabic: Arabic Edition of Multilingual Parallel Corpora with Multiword Expression Annotations
AlphaMWE-Arabic:带有多词表达注释的多语言并行语料库的阿拉伯语版本
Detecting bursty terms in computer science research
检测计算机科学研究中的突发术语
  • DOI:
    10.1007/s11192-019-03307-5
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    E. Tattershall;Goran Nenadic;R. Stevens
  • 通讯作者:
    R. Stevens
CantonMT: Cantonese to English NMT Platform with Fine-Tuned Models Using Synthetic Back-Translation Data
CantonMT:粤语到英语 NMT 平台,具有使用合成回译数据的微调模型
  • DOI:
    10.48550/arxiv.2403.11346
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kung Yin Hong;Lifeng Han;R. Batista;Goran Nenadic
  • 通讯作者:
    Goran Nenadic
Patient discussions of glucocorticoid-related side effects within an online community health forum
  • DOI:
    10.7861/clinmedicine.19-3s-s91
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
  • 作者:
    Arani Vivekanantham;Maksim Belousov;Lamiece Hassan;Goran Nenadic;Will Dixon
  • 通讯作者:
    Will Dixon
Correction to: Mining a stroke knowledge graph from literature
  • DOI:
    10.1186/s12859-021-04502-z
  • 发表时间:
    2021-12-08
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Xi Yang;Chengkun Wu;Goran Nenadic;Wei Wang;Kai Lu
  • 通讯作者:
    Kai Lu

Goran Nenadic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Goran Nenadic', 18)}}的其他基金

Healtex: UK Healthcare Text Analytics Research Network
Healtex:英国医疗保健文本分析研究网络
  • 批准号:
    EP/N027280/1
  • 财政年份:
    2016
  • 资助金额:
    $ 97.8万
  • 项目类别:
    Research Grant
Mining term associations from literature to support knowledge discovery in biology
从文献中挖掘术语关联以支持生物学知识发现
  • 批准号:
    BB/C007360/1
  • 财政年份:
    2006
  • 资助金额:
    $ 97.8万
  • 项目类别:
    Research Grant

相似海外基金

Study on improvement of the medical care environment through plastic arts activities in a pediatric outpatient clinic of a hospital
某医院儿科门诊造型艺术活动改善医疗环境的研究
  • 批准号:
    23K19170
  • 财政年份:
    2023
  • 资助金额:
    $ 97.8万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
The Role of Outpatient Diuretic Therapy in Bronchopulmonary Dysplasia
门诊利尿疗法在支气管肺发育不良中的作用
  • 批准号:
    10663469
  • 财政年份:
    2023
  • 资助金额:
    $ 97.8万
  • 项目类别:
Recovery Bridge: A Peer Facilitated Intervention to help bridge the transition from psychiatric inpatient hospitalization to living in the community
康复桥梁:同伴协助干预,帮助弥合从精神病住院到社区生活的过渡
  • 批准号:
    10637987
  • 财政年份:
    2023
  • 资助金额:
    $ 97.8万
  • 项目类别:
Examining Intensive Outpatient Programs as a Potential Mechanism to Reduce Suicide Risk During the Post-Hospitalization Period Among Medicaid Recipients
检查强化门诊计划作为减少医疗补助接受者住院后自杀风险的潜在机制
  • 批准号:
    10733885
  • 财政年份:
    2023
  • 资助金额:
    $ 97.8万
  • 项目类别:
Evaluating a multi-modal maternal infant perinatal outpatient delivery system: A randomized controlled trial (MOMI PODS RCT)
评估多模式母婴围产期门诊分娩系统:一项随机对照试验 (MOMI PODS RCT)
  • 批准号:
    10834413
  • 财政年份:
    2023
  • 资助金额:
    $ 97.8万
  • 项目类别:
Impacts of the Pennsylvania Rural Health Model on Health Care Access and Utilization
宾夕法尼亚州农村卫生模式对医疗保健获取和利用的影响
  • 批准号:
    10818023
  • 财政年份:
    2023
  • 资助金额:
    $ 97.8万
  • 项目类别:
Examining the effects of Global Budget Revenue Program on the Costs and Quality of Care Provided to Cancer Patients Undergoing Chemotherapy
检查全球预算收入计划对接受化疗的癌症患者提供的护理成本和质量的影响
  • 批准号:
    10734831
  • 财政年份:
    2023
  • 资助金额:
    $ 97.8万
  • 项目类别:
Addressing Algorithmic Unreliability and Dataset Shift in EHR-based Risk Prediction Models
解决基于 EHR 的风险预测模型中的算法不可靠性和数据集转移
  • 批准号:
    10679376
  • 财政年份:
    2023
  • 资助金额:
    $ 97.8万
  • 项目类别:
The Bring BPaL2Me Trial - Comparing Nurse-Led RR-TB Treatment in Primary Care to Physician-Led, Hospital-Based RR-TB Treatment: A Cluster Randomized, Non-Inferiority Trial
Bring BPaL2Me 试验 - 比较初级保健中护士主导的 RR-TB 治疗与医生主导、医院为基础的 RR-TB 治疗:整群随机、非劣效性试验
  • 批准号:
    10698492
  • 财政年份:
    2023
  • 资助金额:
    $ 97.8万
  • 项目类别:
The Averting Readmissions for Malaria and Outpatient Reinfections (ARMOR) Trial
避免疟疾和门诊再感染再入院 (ARMOR) 试验
  • 批准号:
    10328316
  • 财政年份:
    2022
  • 资助金额:
    $ 97.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了