Spin-orbit coupling and dimensionality at the heart of quantum magnetism of heavy transition metal oxides

重过渡金属氧化物量子磁性核心的自旋轨道耦合和维数

基本信息

项目摘要

This proposal is focused on the study of quantum materials with competing interactions. Measurements of the various quantum-mechanical phases provide the most direct manifestation of the underlying abstract physics, such as quantum spin liquid, topological behaviour and quantum entanglement. The in-depth experimental and theoretical investigations of emergent phenomena of the candidate quantum materials have been serving as a major theme of recent condensed matter physics research. Understanding the complex magnetic interactions in these novel quantum materials is crucial for the development of fundamental science in the form of modern theory of higher d transition metal oxides, as well as for the strong foundation of alternative pathways towards the design of new and exotic materials and functional devices, which hold true promise for future generation of technological applications. The investigations on the novel 5d Iridates and 4d rhodates reveal a burgeoning list of theoretical proposals as well as predictions of unusual states, such as Jeff half Mott-insulating state, the quantum spin liquid phase, Kitaev quantum magnetism, unconventional superconductivity, Weyl semimetals, correlated topological insulators, etc., which are indeed truly remarkable and stimulating. The physics of iridates, ruthenates and rhodates clearly warrants serious intellectual challenges both theoretically and experimentally, and hence, in this proposal we focus on design, synthesis and characterisation of the new candidate quantum materials within 4d Rh/Ru- and 5d Ir-based oxides. Quantum spin liquid (QSL) is a novel state of quantum magnetism where long range magnetic order is suppressed due to strong quantum fluctuations down to the lowest temperature. The gapless QSLs exhibit long-range quantum-entanglement and fractionalised spin excitations named as Majorana Fermions. Such fractionalised spin excitations are different from conventional magnons observed in compounds with long-range magnetic ordering. The present proposal is therefore aimed to investigate the exotic and unconventional magnetic ground states of iridates, ruthenates and rhodates within a variety of crystal structures and lattice geometries by implementing detailed experimental study (both laboratory based and state-of-art neutron, muon and x-ray synchrotron based advanced measurements) and ab-initio electronic structure calculations. These in-depth investigations will help in understanding the importance of various competing interactions, e.g. spin-orbit interaction, on-site Coulomb U, crystal field, Hund's coupling, hopping and electronic bandwidth. The nature of the extraordinary structural sensitivity of quantum materials also calls for extraordinarily high-quality single crystals and we are planning to synthesise such single crystals using UCL crystal growth lab at Harwell and investigate them using various central facilities.
该提案的重点是研究具有竞争相互作用的量子材料。各种量子力学相的测量提供了基本抽象物理学的最直接表现,如量子自旋液体,拓扑行为和量子纠缠。对候选量子材料的涌现现象进行深入的实验和理论研究是近年来凝聚态物理研究的一个重要课题。理解这些新型量子材料中复杂的磁相互作用对于以更高d过渡金属氧化物现代理论的形式发展基础科学至关重要,也是为设计新的和奇异的材料和功能器件的替代途径奠定坚实的基础,这些材料和功能器件为未来的技术应用提供了真正的希望。对新颖的5d铱酸盐和4d铑酸盐的研究揭示了一系列新兴的理论建议以及对不寻常状态的预测,例如Jeff half Mott绝缘状态,量子自旋液相,Kitaev量子磁性,非常规超导性,Weyl半金属,相关拓扑绝缘体等,这确实是非常了不起和令人振奋的。铱酸盐,铼酸盐和铑酸盐的物理学显然在理论和实验上都面临着严重的智力挑战,因此,在本提案中,我们专注于设计,合成和表征4D Rh/Ru-和5D Ir-基氧化物中的新候选量子材料。量子自旋液体(QSL)是一种新的量子磁性状态,在这种状态下,由于强烈的量子涨落,长程磁有序被抑制到最低温度。这种无带隙的量子线表现出长程量子纠缠和分数自旋激发,称为马约拉纳费米子。这种分裂的自旋激发不同于在具有长程磁有序的化合物中观察到的常规磁振子。因此,本提案的目的是调查的奇异和非常规的磁基态的铱酸盐,铼酸盐和铑酸盐的各种晶体结构和晶格几何形状,通过实施详细的实验研究(实验室和国家的最先进的中子,μ子和X射线同步加速器为基础的先进测量)和从头计算的电子结构计算。这些深入的研究将有助于理解各种竞争相互作用的重要性,例如自旋轨道相互作用,现场库仑U,晶体场,Hund耦合,跳跃和电子带宽。量子材料的非凡结构敏感性的性质也要求非常高质量的单晶,我们计划使用Harwell的UCL晶体生长实验室合成这种单晶,并使用各种中心设施对其进行研究。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Superconducting Gap Structure of the Noncentrosymmetric Topological Superconductor Candidate HfRuP
  • DOI:
    10.3390/magnetochemistry9050135
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    D. Das;D. Adroja;R. Tripathi;Z. Guguchia;F. Hotz;H. Luetkens;Zhijun Wang;Dayu Yan;Huiqian Luo;Youguo Shi
  • 通讯作者:
    D. Das;D. Adroja;R. Tripathi;Z. Guguchia;F. Hotz;H. Luetkens;Zhijun Wang;Dayu Yan;Huiqian Luo;Youguo Shi
Magnetic and Magnetoelectric Materials
磁性和磁电材料
  • DOI:
    10.3390/magnetochemistry10020008
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Adroja D
  • 通讯作者:
    Adroja D
Thermal conductivity, thermoelectric power and Mössbauer investigations on atiferromagnetic CeFe1.7Ir0.3Al10
反铁磁 CeFe1.7Ir0.3Al10 的热导率、热电势和穆斯堡尔研究
Metamagnetism and crystal-field splitting in pseudohexagonal CeRh 3 Si 2
赝六方 CeRh 3 Si 2 中的超磁性和晶体场分裂
  • DOI:
    10.1103/physrevb.105.125119
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Amorese A
  • 通讯作者:
    Amorese A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Devashibhai Adroja其他文献

Spin dynamics of a magnetic Weyl semimetal Sr1-xMn1-ySb2
磁性外尔半金属 Sr1-xMn1-ySb2 的自旋动力学
  • DOI:
    10.1103/physrevb.101.134408
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zhengwei Cai;Song Bao;Wei Wang;Zhen Ma;Zhao-Yang Dong;Yanyan Shangguan;Jinghui Wang;Kejing Ran;Shichao Li;Kazuya Kamazawa;Mitsutaka Nakamura;Devashibhai Adroja;Shun-Li Yu;Jian-Xin Li;Jinsheng Wen
  • 通讯作者:
    Jinsheng Wen
Complex magnetic properties associated with competing local and itinerant magnetism in $${\text {Pr}}_2 {\text {Co}}_{0.86} {\text {Si}}_{2.88}$$
与$${\text {Pr}}_2 {\text {Co}}_{0.86} {\text {Si}}_{2.88}$$中竞争的局域磁矩和巡游磁矩相关的复杂磁性
  • DOI:
    10.1038/s41598-021-90751-0
  • 发表时间:
    2021-06-24
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Mily Kundu;Santanu Pakhira;Renu Choudhary;Durga Paudyal;N. Lakshminarasimhan;Maxim Avdeev;Stephen Cottrell;Devashibhai Adroja;R. Ranganathan;Chandan Mazumdar
  • 通讯作者:
    Chandan Mazumdar
価数揺動物質CeIrSnの負の磁歪熱膨張と磁気相関
价态振荡物质CelSn的负磁致伸缩热膨胀与磁关联
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    志村恭通;Andreas Worl;Philipp Gegenwart;津田研;鬼丸孝博;高畠敏郎;Amitava Bhattacharyya;Andre Strydom;Adrian Hillier;Devashibhai Adroja
  • 通讯作者:
    Devashibhai Adroja
Spin dynamics and Griffiths singularity in the random quantum Ising magnet PrTiNbO6
随机量子伊辛磁体 PrTiNbO6 中的自旋动力学和格里菲斯奇点
  • DOI:
    10.1038/s41535-021-00333-6
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Yuesheng Li;Qiao-Yi Li;Wei Li;Tao Liu;David J. Voneshen;Pabitra K. Biswas;Devashibhai Adroja
  • 通讯作者:
    Devashibhai Adroja
Strong interlayer magnetic exchange coupling in Lasub3/subNisub2/subOsub7−emδ/em/sub revealed by inelastic neutron scattering
lasub3/subnisub2/suboSub7 -emΔ/em/sub中的强层间磁交换耦合通过非弹性中子散射显示
  • DOI:
    10.1016/j.scib.2024.07.030
  • 发表时间:
    2024-10-30
  • 期刊:
  • 影响因子:
    21.100
  • 作者:
    Tao Xie;Mengwu Huo;Xiaosheng Ni;Feiran Shen;Xing Huang;Hualei Sun;Helen C. Walker;Devashibhai Adroja;Dehong Yu;Bing Shen;Lunhua He;Kun Cao;Meng Wang
  • 通讯作者:
    Meng Wang

Devashibhai Adroja的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

铁磁体/拓扑绝缘体异质结磁性邻近效应及Spin Orbit Torque研究
  • 批准号:
    11574129
  • 批准年份:
    2015
  • 资助金额:
    73.0 万元
  • 项目类别:
    面上项目

相似海外基金

Light-spin interconversion in heavy metals with strong spin orbit coupling
具有强自旋轨道耦合的重金属中的轻自旋互变
  • 批准号:
    22KJ0496
  • 财政年份:
    2023
  • 资助金额:
    $ 48.29万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Exploring novel quantum phenomena induced by spin-orbit coupling and quantum interference effects
探索自旋轨道耦合和量子干涉效应引起的新颖量子现象
  • 批准号:
    23KJ0783
  • 财政年份:
    2023
  • 资助金额:
    $ 48.29万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Collaborative Research: Harvesting electronic flat bands and strong spin-orbit coupling for novel functionalities in metal monochalcogenides
合作研究:收获电子平带和强自旋轨道耦合以实现金属单硫族化物的新功能
  • 批准号:
    2219003
  • 财政年份:
    2022
  • 资助金额:
    $ 48.29万
  • 项目类别:
    Continuing Grant
Ultrafast femtosecond laser control of electron dynamics in two-dimensional strong spin-orbit coupling materials
二维强自旋轨道耦合材料中电子动力学的超快飞秒激光控制
  • 批准号:
    22K13991
  • 财政年份:
    2022
  • 资助金额:
    $ 48.29万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Proposal: Harvesting electronic flat bands and strong spin-orbit coupling for novel functionalities in metal monochalcogenides
合作提案:收获电子平带和强自旋轨道耦合以实现金属单硫属化物的新功能
  • 批准号:
    2219048
  • 财政年份:
    2022
  • 资助金额:
    $ 48.29万
  • 项目类别:
    Continuing Grant
Coherent quantum information platform with spin-orbit coupling in silicon
硅中自旋轨道耦合的相干量子信息平台
  • 批准号:
    RGPIN-2019-04150
  • 财政年份:
    2022
  • 资助金额:
    $ 48.29万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Structural Control of Spin-Orbit Coupling
职业:自旋轨道耦合的结构控制
  • 批准号:
    2046020
  • 财政年份:
    2021
  • 资助金额:
    $ 48.29万
  • 项目类别:
    Continuing Grant
Coherent quantum information platform with spin-orbit coupling in silicon
硅中自旋轨道耦合的相干量子信息平台
  • 批准号:
    RGPIN-2019-04150
  • 财政年份:
    2021
  • 资助金额:
    $ 48.29万
  • 项目类别:
    Discovery Grants Program - Individual
Designing Topological Superconductors from Spin-Orbit Coupling in Iridium Oxide Superlattices
利用氧化铱超晶格中的自旋轨道耦合设计拓扑超导体
  • 批准号:
    534657-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 48.29万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Strong Spin-Orbit Coupling and High Mobility via Complex Oxide Heteroepitaxy
通过复合氧化物异质外延实现强自旋轨道耦合和高迁移率
  • 批准号:
    2037652
  • 财政年份:
    2021
  • 资助金额:
    $ 48.29万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了