Efficient Cross-Domain DSL Development for Exascale

针对百亿亿次计算的高效跨域 DSL 开发

基本信息

  • 批准号:
    EP/W007940/1
  • 负责人:
  • 金额:
    $ 73.54万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Developing scientific software, for example for climate modeling or medical research, is a highly challenging task. Domain scientists are often deeply involved in low-level programming details just to make their code run sufficiently fast. These tedious, but important, optimization steps significantly reduce the productivity of scientists.Domain specific languages (DSLs) revolutionize the productivity of domain scientists by enabling them to focus on scientific questions rather than making their code run fast. Sophisticated DSL compilers automatically generate high-performance code from domain-specific high-level problem descriptions.While there are individual successes, the existing landscape of DSLs is scattered and the reuse of software components in DSL compiler implementations is limited as traditionally DSL compilers are built in isolation. This results in high development costs of new DSLs and prevents many DSLs from ever achieving a level of maturity and sustainability that enables uptake by the scientific community.This project revolutionizes the design of DSL compiler implementations by leveraging the breadth and cross-industry support of the MLIR compiler and Python ecosystems. Python is the tool of choice for application developers in many domains, such as machine learning, data science, and - we believe - an important component of the future of High Performance Computing software. This project establishes MLIR as a common representation for code at multiple levels of abstraction in DSL compiler development. DSLs embedded in various host languages, including Python and Fortran, will be easily built on top of MLIR. Instead of building DSL compilers as isolated monolithic towers, our research will build a toolbox that enables developers to build DSLs using a rich ecosystem of shared intermediate representations IRs and optimizations.This project evaluates, drives, and demonstrates the DSL design toolbox to build the next generation of DSLs for Seismic and Climate Modelling as well as Medical imaging. These will share common software components and make them available for other DSLs. An extensive evaluation will show the scalability of DSL software towards exascale.Finally, this project investigates how future disruptors, including artificial intelligence, data science, and on-demand HPC-as-a-service, will shape and influence the next generations of high performance software. This project will work towards deeply integrating modern interactive data analytics and machine learning methods from the Python ecosystem with high-performance scientific code.
开发科学软件,例如用于气候建模或医学研究,是一项艰巨的任务。域科学家通常会深入参与低级编程细节,只是为了使他们的代码运行得足够快。这些乏味但重要的优化步骤可显​​着降低科学家的生产力。特定于域的语言(DSL)通过使他们能够专注于科学问题而不是使他们的代码快速运行,从而彻底改变了领域科学家的生产力。复杂的DSL编译器会自动从域特异性的高级问题描述中生成高性能代码。尽管有个人成功,但DSL的现有景观却分散了,并且在DSL编译器实现中,软件组件的重复使用是传统上是DSL Compilers In Insimation Insimation Nexlation Nexlion In Insimation in Insial in Insial Insimation。这导致了新的DSLS的高开发成本,并阻止许多DSL达到一定程度的成熟和可持续性,从而使科学界的吸收能力。该项目通过利用对MLIR Compiler和Python Ecosystems的广度和交叉印度支持来改变DSL编译器实施的设计。 Python是许多领域中的应用程序开发人员的选择工具,例如机器学习,数据科学和 - 我们相信 - 高性能计算软件未来的重要组成部分。该项目将MLIR作为DSL编译器开发中多个抽象的代码的共同表示。嵌入在包括Python和Fortran在内的各种主机语言中的DSL将很容易在MLIR顶部建造。 Instead of building DSL compilers as isolated monolithic towers, our research will build a toolbox that enables developers to build DSLs using a rich ecosystem of shared intermediate representations IRs and optimizations.This project evaluates, drives, and demonstrates the DSL design toolbox to build the next generation of DSLs for Seismic and Climate Modelling as well as Medical imaging.这些将共享通用的软件组件,并使它们可用于其他DSL。广泛的评估将显示DSL软件向Exascale的可伸缩性。在本文中,该项目调查了包括人工智能,数据科学和按需HPC-AS-AS-AS-Service在内的未来破坏者如何塑造和影响下一代高性能软件。该项目将致力于从Python生态系统中深入整合现代交互式数据分析和机器学习方法,并具有高性能科学法典。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fortran High-Level Synthesis: Reducing the Barriers to Accelerating HPC Codes on FPGAs
Fortran performance optimisation and auto-parallelisation by leveraging MLIR-based domain specific abstractions in Flang
通过利用 Flang 中基于 MLIR 的领域特定抽象来优化 Fortran 性能和自动并行化
  • DOI:
    10.1145/3624062.3624167
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brown N
  • 通讯作者:
    Brown N
Stencil-HMLS: A multi-layered approach to the automatic optimisation of stencil codes on FPGA
Stencil-HMLS:一种在 FPGA 上自动优化模板代码的多层方法
  • DOI:
    10.1145/3624062.3624543
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Rodriguez-Canal G
  • 通讯作者:
    Rodriguez-Canal G
IRDL: An IR Definition Language for SSA Compilers
IRDL:SSA 编译器的 IR 定义语言
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mathieu Fehr
  • 通讯作者:
    Mathieu Fehr
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tobias Grosser其他文献

Falcon: A Scalable Analytical Cache Model
Falcon:可扩展的分析缓存模型
Analysis of merge criteria within a watershed based segmentation algorithm
基于分水岭的分割算法内合并标准的分析

Tobias Grosser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

PGK1乙酰化修饰介导癌细胞与TAMs间Cross-talk调控胆囊癌EMT的研究
  • 批准号:
    82373032
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
DNA复制叉偶联的姐妹染色单体黏连建立机制与构象基础
  • 批准号:
    32300074
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
三叉神经外泌体转运TUFm调控SHED线粒体自噬再生牙髓感觉神经的作用机制
  • 批准号:
    82370927
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
MYRF/SLC7A11调控施万细胞铁死亡在三叉神经痛脱髓鞘病变中的作用和分子机制研究
  • 批准号:
    82370981
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
线粒体ClpP激动剂通过铁死亡-免疫调控cross-talk治疗急性髓细胞白血病的机制研究
  • 批准号:
    82370171
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411152
  • 财政年份:
    2024
  • 资助金额:
    $ 73.54万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411153
  • 财政年份:
    2024
  • 资助金额:
    $ 73.54万
  • 项目类别:
    Standard Grant
CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
  • 批准号:
    2338506
  • 财政年份:
    2024
  • 资助金额:
    $ 73.54万
  • 项目类别:
    Continuing Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
  • 批准号:
    2411151
  • 财政年份:
    2024
  • 资助金额:
    $ 73.54万
  • 项目类别:
    Standard Grant
Potent broadly neutralizing antibody development against the HIV-1 fusion peptide epitope
针对 HIV-1 融合肽表位的强效广泛中和抗体的开发
  • 批准号:
    10838825
  • 财政年份:
    2023
  • 资助金额:
    $ 73.54万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了