Pointwise Convergence of Multiple Ergodic Averages
多个遍历平均值的逐点收敛
基本信息
- 批准号:EP/W010275/2
- 负责人:
- 金额:$ 35.47万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Ergodic theory is the study of equidistribution phenomena in very great generality: given a typically ``randomizing," but size preserving transformation, T, of a bounded environment, X, one seeks to understand the properties of the orbit O(p) := {p, Tp, T^2p, ... } for a typical initial position, p. To make this discussion rigorous, one imposes measure theoretic structure on X, equipping it with a probability measure, i.e. an abstract volume element, m.From our work on numerical integration, we expect that if the orbit O(p) is ``equidistributed" with respect to m, then the sampling procedureF_N(p) := 1/N (f(Tp) + f(T^2 p) + ... + f(T^N p) )should approximate the integral of f with respect to m. The content of George Birkhoff's pointwise ergodic theorem, proven in 1931, is that aside from an m-negligible set of starting locations, F_N(p) always tends towards the integral of f with respect to m, provided that the integral of f exists, and T is sufficiently randomizing. Colloquially: the "time averages" of f converge to the "space average" of f.A classical problem in ergodic theory concerns polynomial extension of Birkhoff's theorem: the convergence of G_N(p) := 1/N ( g(T^{P(1)} p) + g(T^{P(2)} p) + ... + g(T^{P(N)} p) ), where P is a polynomial with integer coefficients: i.e. the equidistribution of O(p) when restricted to polynomial times. In the late 1980s and early 1990s, the Fields Medalist Jean Bourgain proved that provided that (say) whenever g is bounded, aside from an m-negligible set of starting locations, G_N(p) also converge; in order to recover the integral of g, we require slightly more randomizing behavior from our transformation, T.This proposal will study the convergence properties of multiple ergodic averages, formed by studying interference between many different functions, {h_1,...,h_m} many different commuting transformations, {T_1,...,T_m} and many different polynomials with distinct degrees with integer coefficients, {P_1,...,P_m}: we will seek to understand the convergence of the averagesK_N(p) := 1/N( H_1(p) + H_2(p) + ... + H_N(p))whereH_n(p) := h_1(T_1^{P_1(n)} p) x ... x h_m(T_m^{P_m(n)} p).
遍历理论是对非常普遍的等分布现象的研究:给出一个有界环境X的典型的‘随机化’但大小保持不变的变换T,人们试图理解轨道O(P)的性质:对于典型的初始位置p={p,Tp,T^2p,...}。为了使讨论严格,人们将测量理论结构强加给X,为它配备一个概率测量,即抽象的体积元素m。从我们在数值积分方面的工作,我们期望如果轨道O(P)关于m是‘装备分布的’,那么采样过程F_N(P):=1/N(f(Tp)+f(T^2p)+…+f(T^Np))应该逼近f关于m的积分。1931年证明的George Birkhoff逐点遍历定理的内容是,如果f的积分存在,且T充分随机化,F_N(P)总是趋于f关于m的积分。通俗地说:f的“时间平均”收敛到F的“空间平均”。遍历理论中的一个经典问题涉及Birkhoff定理的多项式推广:G_N(P)的收敛:=1/N(g(T^{P(1)}p)+g(T^{P(2)}p)+...+g(T^{P(N)}p)),其中P是整系数多项式:即当限制到多项式次数时O(P)的等分布。在20世纪80年代末和90年代初,菲尔兹奖牌获得者Jean Bourain证明了:如果(比方说)当g有界时,除了m-可忽略的起始位置集外,G_N(P)也收敛;为了恢复g的积分,我们需要从我们的变换中稍微多一些随机化的行为。这个建议将研究通过研究许多不同函数、{h_1,…,h_m}许多不同的交换变换,{T_1,...,T_m}和许多不同次数的具有整系数的不同次数的多项式之间的干扰而形成的多个遍历平均的收敛性质。P_m}:我们将试图理解平均值K_N(P)的收敛:=1/N(H_1(P)+H_2(P)+…+H_N(P))其中h_n(P):=h_1(T_1^{P_1(N)}p)x…Xh_m(T_m^{P_m(N)}p)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ben Krause其他文献
Evaluation of Rotational Stiffness for Uplifted Wind Turbine Gravity Foundation in Clays
粘土中升起式风力发电机重力基础的旋转刚度评估
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Jixiang Li;Dongyuan Wang;Eric Ntambakwa;Yunhan Huang;Ben Krause - 通讯作者:
Ben Krause
STR-typing of ancient skeletal remains: which multiplex-PCR kit is the best?
古代骨骼遗骸的 STR 分型:哪种多重 PCR 试剂盒最好?
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:1.9
- 作者:
Melanie Harder;R. Renneberg;Patrick Meyer;Ben Krause;N. von Wurmb - 通讯作者:
N. von Wurmb
On the Efficiency of Recurrent Neural Network Optimization Algorithms
论递归神经网络优化算法的效率
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ben Krause;Liang Lu;Iain R. Murray;S. Renals - 通讯作者:
S. Renals
Discrete analogues of maximally modulated singular integrals of Stein-Wainger type: emℓ/emsupemp/em/sup bounds for emp/em 1
斯坦-怀纳型极大调制奇异积分的离散类似物:\(L^1\) 的 \(L^p\) 界
- DOI:
10.1016/j.jfa.2023.110123 - 发表时间:
2023-11-15 - 期刊:
- 影响因子:1.600
- 作者:
Ben Krause;Joris Roos - 通讯作者:
Joris Roos
Genetische Analyse auf dem mehrperiodigen Gräberfeld von Wittmar, Ldkr. Wolfenbüttel
格雷伯菲尔德·冯·维特马尔 (Wolfenbüttel) 的基因分析。
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Christoph Rinne;Ben Krause - 通讯作者:
Ben Krause
Ben Krause的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ben Krause', 18)}}的其他基金
PCMEA: Pointwise Convergence of Multiple Ergodic Averages
PCMEA:多重遍历平均值的逐点收敛
- 批准号:
EP/Y007336/1 - 财政年份:2023
- 资助金额:
$ 35.47万 - 项目类别:
Research Grant
Pointwise Convergence of Multiple Ergodic Averages
多个遍历平均值的逐点收敛
- 批准号:
EP/W010275/1 - 财政年份:2021
- 资助金额:
$ 35.47万 - 项目类别:
Research Grant
相似海外基金
NSF Convergence Accelerator Track L: UAV-assisted dual-comb spectroscopic detection, localization, and quantification of multiple atmospheric trace-gas emissions
NSF 收敛加速器轨道 L:无人机辅助的双梳光谱检测、定位和多种大气痕量气体排放的量化
- 批准号:
2344395 - 财政年份:2024
- 资助金额:
$ 35.47万 - 项目类别:
Standard Grant
PCMEA: Pointwise Convergence of Multiple Ergodic Averages
PCMEA:多重遍历平均值的逐点收敛
- 批准号:
EP/Y007336/1 - 财政年份:2023
- 资助金额:
$ 35.47万 - 项目类别:
Research Grant
Convergence of multiple exposures during pregnancy: Effect of wildfires and maternal stressors on birth outcomes among Alaskan women
怀孕期间多重暴露的汇集:野火和母亲压力源对阿拉斯加妇女出生结果的影响
- 批准号:
10350520 - 财政年份:2022
- 资助金额:
$ 35.47万 - 项目类别:
Convergence of multiple exposures during pregnancy: Effect of wildfires and maternal stressors on birth outcomes among Alaskan women
怀孕期间多重暴露的汇集:野火和母亲压力源对阿拉斯加妇女出生结果的影响
- 批准号:
10552646 - 财政年份:2022
- 资助金额:
$ 35.47万 - 项目类别:
Pointwise Convergence of Multiple Ergodic Averages
多个遍历平均值的逐点收敛
- 批准号:
EP/W010275/1 - 财政年份:2021
- 资助金额:
$ 35.47万 - 项目类别:
Research Grant
Convergence problem of multiple Fourier series and Gauss circle problem
多个傅里叶级数的收敛问题和高斯圆问题
- 批准号:
17K18731 - 财政年份:2017
- 资助金额:
$ 35.47万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Regulation of mTOR signaling in the developing cerebral cortex as a point of convergence for multiple autism risk factors
发育中大脑皮层中 mTOR 信号的调节作为多种自闭症危险因素的汇聚点
- 批准号:
10573282 - 财政年份:2016
- 资助金额:
$ 35.47万 - 项目类别:
Regulation of mTOR signaling in the developing cerebral cortex as a point of convergence for multiple autism risk factors
发育中大脑皮层中 mTOR 信号的调节作为多种自闭症危险因素的汇聚点
- 批准号:
10598314 - 财政年份:2016
- 资助金额:
$ 35.47万 - 项目类别:
Regulation of mTOR signaling in the developing cerebral cortex as a point of convergence for multiple autism risk factors
发育中大脑皮层中 mTOR 信号的调节作为多种自闭症危险因素的汇聚点
- 批准号:
9888430 - 财政年份:2016
- 资助金额:
$ 35.47万 - 项目类别:
Regulation of mTOR signaling in the developing cerebral cortex as a point of convergence for multiple autism risk factors
发育中大脑皮层中 mTOR 信号的调节作为多种自闭症危险因素的汇聚点
- 批准号:
10397685 - 财政年份:2016
- 资助金额:
$ 35.47万 - 项目类别: