Nonlinear critical point theory near singular solutions

奇异解附近的非线性临界点理论

基本信息

  • 批准号:
    EP/W026597/1
  • 负责人:
  • 金额:
    $ 47.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

A large proportion of phenomena that appear in geometry and theoretical physics can be phrased in terms of an energy (or action) function. The critical points correspond to states of equilibrium and are described by systems of non-linear partial differential equations (PDE), often solved on a curved background space. For example soap films/bubbles, fundamental particles in quantum field theory, nematic liquid crystals, the shape of red blood cells, or event horizons of black holes all admit theoretical descriptions of this type. Remarkably, in their simplest form, the above examples (and many more) correspond to a handful of archetypal mathematical problems. The setting of this proposal is the study of these archetypal problems. It involves a rich interplay between analysis and geometry, chiefly in the combination of the rigorous study of non-linear PDE and differential geometry: an area that has had tremendous impact in recent years with (for instance) Perelman's resolution of the Poincaré and Geometrisation Conjectures, Schoen-Yau's proof of the Positive Mass Theorem from mathematical relativity and Marques-Neves' proof of the Willmore conjecture in differential geometry. A naturally occurring feature of the above problems (and non-linear PDE in the large) is the formation of singularities, which correspond to regions where solutions blow up along a subset of the domain. Due to their geometric nature, there is also scope for the domain itself to degenerate or change topology. For example a thin neck may form between two parts of a surface, which disappears over time and disconnects the two parts - one might think of this as a "wormhole" type singularity. The main aim of this proposal is to introduce tools in PDE theory and differential geometry in order to model and analyse such singularities (where a change of topology takes place). In this setting, there have been tremendous advances in analysing and classifying potential singularity formation, but often relatively little is understood about whether certain singularity types exist, or not. We will initiate a systematic and novel study of the "simplest" types of singularity formation and find conditions which determine whether they exist, and can be constructed, or whether there is a barrier to their existence.
几何学和理论物理学中出现的大部分现象都可以用能量(或作用)函数来描述。临界点对应于平衡状态,并由非线性偏微分方程(PDE)系统描述,通常在弯曲的背景空间上求解。例如肥皂膜/气泡、量子场论中的基本粒子、向列相液晶、红细胞的形状或黑洞的事件视界都承认这种类型的理论描述。值得注意的是,在最简单的形式中,上述例子(以及更多)对应于少数几个典型的数学问题。本文的背景就是对这些原型问题的研究。它涉及到分析和几何之间的丰富的相互作用,主要是在非线性偏微分方程和微分几何的严格研究相结合:一个领域,产生了巨大的影响,近年来(例如)佩雷尔曼的决议庞加莱和几何猜想,肖恩-丘的证明正质量定理从数学相对论和马克-内维斯'证明的Willmore猜想在微分几何。上述问题(以及大的非线性偏微分方程)的一个自然发生的特征是奇点的形成,奇点对应于解沿域的一个子集沿着爆破的区域。由于它们的几何性质,域本身也有退化或改变拓扑的空间。例如,一个表面的两个部分之间可能会形成一个细颈,它会随着时间的推移而消失,并断开两个部分-人们可能会认为这是一个“虫洞”类型的奇点。该提案的主要目的是引入偏微分方程理论和微分几何工具,以便建模和分析这种奇点(拓扑结构发生变化)。在这种背景下,在分析和分类潜在的奇点形成方面取得了巨大的进步,但通常对某些奇点类型是否存在的理解相对较少。我们将开始一个系统的和新颖的研究“最简单的”类型的奇点形成,并找到条件,确定它们是否存在,可以构建,或者是否有一个障碍,他们的存在。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Sharp其他文献

Benjamin Sharp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

堆垒基与Narkiewicz常数的研究
  • 批准号:
    11226279
  • 批准年份:
    2012
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

Accurate and Reliable Diagnostics for Injured Children: Machine Learning for Ultrasound
为受伤儿童提供准确可靠的诊断:超声机器学习
  • 批准号:
    10572582
  • 财政年份:
    2023
  • 资助金额:
    $ 47.04万
  • 项目类别:
Integration of Immunologic Phenotyping with Computational Approaches to Predict Clinical Trajectory in Septic Patients
免疫表型分析与计算方法相结合来预测脓毒症患者的临床轨迹
  • 批准号:
    10708534
  • 财政年份:
    2023
  • 资助金额:
    $ 47.04万
  • 项目类别:
Deep Learning Assisted Scoring of Point of Care Lung Ultrasound for Acute Decompensated Heart Failure in the Emergency Department
深度学习辅助急诊室急性失代偿性心力衰竭护理点肺部超声评分
  • 批准号:
    10741596
  • 财政年份:
    2023
  • 资助金额:
    $ 47.04万
  • 项目类别:
Exploring the QCD critical point through conserved charge fluctuations
通过守恒电荷波动探索 QCD 临界点
  • 批准号:
    23K13113
  • 财政年份:
    2023
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Physiologic Predictors of Respiratory Failure in Patients Presenting with Dyspnea
呼吸困难患者呼吸衰竭的生理预测因素
  • 批准号:
    10606999
  • 财政年份:
    2023
  • 资助金额:
    $ 47.04万
  • 项目类别:
Social Media Signals for reducing Perinatal Death by Suicide
减少围产期自杀死亡的社交媒体信号
  • 批准号:
    10575210
  • 财政年份:
    2023
  • 资助金额:
    $ 47.04万
  • 项目类别:
Influence of quantum critical point on depairing current density and critical current density
量子临界点对配对电流密度和临界电流密度的影响
  • 批准号:
    23KK0073
  • 财政年份:
    2023
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
The effect of gestational age at delivery on lactation outcomes in pump-dependent mothers of critically ill infants
分娩孕周对危重婴儿依赖泵的母亲哺乳结局的影响
  • 批准号:
    10662962
  • 财政年份:
    2023
  • 资助金额:
    $ 47.04万
  • 项目类别:
Stretchable Coils for Low-Field, Portable MRI
用于低场便携式 MRI 的可拉伸线圈
  • 批准号:
    10724525
  • 财政年份:
    2023
  • 资助金额:
    $ 47.04万
  • 项目类别:
High-energy heavy-ion observables for quantum chromodynamics critical point search
用于量子色动力学临界点搜索的高能重离子可观测量
  • 批准号:
    23K13102
  • 财政年份:
    2023
  • 资助金额:
    $ 47.04万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了