Scalable Templating Layers for Advanced Batteries
适用于高级电池的可扩展模板层
基本信息
- 批准号:EP/W029235/1
- 负责人:
- 金额:$ 48.92万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Breakthroughs in battery technologies are critically needed to enable the widespread adoption of electric vehicles and the grid-scale storage of renewable energy. Solid-state batteries using a lithium (Li) metal anode are rapidly emerging and promise greater range and charging speeds, as well as improved safety. However, dendrite formation almost universally compromises such cells, and they quickly fail under realistic operating conditions. Only inorganic glassy solid electrolyes (SEs) have shown the exceptional ability to "template" stable Li plating/stripping at relevant rates. However, these SEs remain underexplored as they require high-cost, low-throughput vacuum deposition techniques that are incompatible with large-scale battery production.The aim of this research proposal is to engineer a new family of scalable "templating layers" to enable high-rate solid-state batteries. Taking inspiration from vacuum-deposited SEs -- namely the homogeneous, non-crystalline (glass) structure, electrically insulating nature and very flat morphology of the SE used -- we will use low temperature, solution-based techniques that can realise these key attributes and be easily scaled-up to industrially relevant levels. A major challenge in engineering glassy materials stems from their inherent disorder, meaning the critical relationships between atomic structure, electrochemical properties and processing usually remain elusive. A suite of advanced characterisation methods, including X-ray scattering, thermal desorption spectroscopy and operando imaging, will uncover new design rules that span materials to devices. The outputs of this study will be invaluable for the study of disordered functional coatings and have wide impact in energy storage, especially to related battery chemistries, microelectronics and sensing applications.
为了实现电动汽车的广泛采用和可再生能源的电网规模存储,迫切需要在电池技术上取得突破。使用锂(Li)金属阳极的固态电池正在迅速兴起,并有望实现更大的范围和充电速度,以及更高的安全性。然而,枝晶的形成几乎普遍地损害这些电池,并且它们在实际操作条件下很快失效。只有无机玻璃态固体电解质(SE)显示出在相关速率下“模板”稳定Li电镀/剥离的卓越能力。然而,这些SE仍然没有得到充分的探索,因为它们需要高成本,低产量的真空沉积技术,与大规模电池生产不兼容。这项研究提案的目的是设计一个新的可扩展的“模板层”系列,以实现高速率固态电池。从真空沉积的SE中获得灵感-即所使用的SE的均匀,非晶(玻璃)结构,电绝缘性质和非常平坦的形态-我们将使用低温,基于溶液的技术,可以实现这些关键属性,并很容易扩大到工业相关水平。工程玻璃材料的一个主要挑战源于其固有的无序性,这意味着原子结构,电化学性质和加工之间的关键关系通常仍然难以捉摸。一套先进的表征方法,包括X射线散射,热解吸光谱和操作成像,将揭示新的设计规则,跨越材料的设备。这项研究的结果对于无序功能涂层的研究将是非常宝贵的,并在储能方面产生广泛的影响,特别是对相关的电池化学,微电子和传感应用。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Engineering Solution-Processed Non-Crystalline Solid Electrolytes for Li Metal Batteries.
- DOI:10.1021/acs.chemmater.2c03071
- 发表时间:2023-02-14
- 期刊:
- 影响因子:8.6
- 作者:Rettie, Alexander J. E.;Vadhva, Pooja;Gill, Thomas E.;Cruddos, Joshua H.;Said, Samia;Siniscalchi, Marco;Narayanan, Sudarshan;Pasta, Mauro;Miller, Thomas S.
- 通讯作者:Miller, Thomas S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander John Edward Rettie其他文献
Alexander John Edward Rettie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Design of Multifunctional Nanocomposites through Mixed-Graft Block Copolymer Templating
通过混合接枝嵌段共聚物模板设计多功能纳米复合材料
- 批准号:
2320956 - 财政年份:2023
- 资助金额:
$ 48.92万 - 项目类别:
Standard Grant
Easily cleavable organic templating agent for making metal organic frameworks
用于制造金属有机框架的易裂解有机模板剂
- 批准号:
574791-2022 - 财政年份:2022
- 资助金额:
$ 48.92万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research RUI: Examination of the Effect of Templating Agents on the Size, Shape and Chiral Recognition of Bifurcated Amino Acid Based Amphiphilic Molecular Assemblies
合作研究 RUI:检查模板剂对基于分叉氨基酸的两亲性分子组装体的尺寸、形状和手性识别的影响
- 批准号:
2203652 - 财政年份:2022
- 资助金额:
$ 48.92万 - 项目类别:
Standard Grant
Collaborative Research RUI: Examination of the Effect of Templating Agents on the Size, Shape and Chiral Recognition of Bifurcated Amino Acid Based Amphiphilic Molecular Assemblies
合作研究 RUI:检查模板剂对基于分叉氨基酸的两亲性分子组装体的尺寸、形状和手性识别的影响
- 批准号:
2203506 - 财政年份:2022
- 资助金额:
$ 48.92万 - 项目类别:
Standard Grant
Stimuli-Responsive Membranes from Mesophase Templating
中间相模板的刺激响应膜
- 批准号:
2212894 - 财政年份:2021
- 资助金额:
$ 48.92万 - 项目类别:
Standard Grant
In-situ templating of structured electrodes
结构化电极的原位模板化
- 批准号:
2790403 - 财政年份:2020
- 资助金额:
$ 48.92万 - 项目类别:
Studentship
Liquid Crystals of Nanonucleic Acids: Hierarchical Self-Assembly as a Route to Prebiotic Selection, Templating, and Autocatalysis
纳米核酸液晶:分层自组装作为益生元选择、模板化和自催化的途径
- 批准号:
2005212 - 财政年份:2020
- 资助金额:
$ 48.92万 - 项目类别:
Standard Grant
Controlling Microstructure of Metal and Polymer Aerogels via Advanced Templating Approaches
通过先进的模板方法控制金属和聚合物气凝胶的微观结构
- 批准号:
2439091 - 财政年份:2020
- 资助金额:
$ 48.92万 - 项目类别:
Studentship
Stimuli-Responsive Membranes from Mesophase Templating
中间相模板的刺激响应膜
- 批准号:
1840871 - 财政年份:2019
- 资助金额:
$ 48.92万 - 项目类别:
Standard Grant
Development of a novel method to control the structure of zeolites by ensemble templating of structure-directing agents
开发一种通过结构导向剂整体模板控制沸石结构的新方法
- 批准号:
18K14053 - 财政年份:2018
- 资助金额:
$ 48.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists