Electrosynthetic approaches to hydrogen production for a net zero future encompassing new materials paradigms

包含新材料范例的电合成制氢方法,实现净零未来

基本信息

  • 批准号:
    EP/W033208/1
  • 负责人:
  • 金额:
    $ 32.16万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

As the international community is focused on the development of low (or net zero) carbon technologies it is imperative that efficient and effective routes to produce alternative fuels are developed. Leading governments worldwide have made significant commitments to the use of hydrogen as a future fuel, and proposed several renewable routes to produce significant volumes of hydrogen for use in transport and in both domestic and industrial settings. However transport and storage of hydrogen are issues that need to be addressed before widespread adoption of hydrogen can be envisaged. As an energy carrier ammonia, with significant hydrogen content, has been considered attractive as this hydrogen carrier is produced industrially at volume and has an international transport infrastructure. The current disadvantage with ammonia is that the synthesis of this has a large carbon footprint, relying on steam methane reforming to produce the hydrogen required to synthesis ammonia. Assuming that green ammonia can be produced, the remaining issue is the availability of effective earth abundant materials for the catalytic decomposition of ammonia, and the separation of the resultant gas streams. In this project we will develop new catalysts for ammonia decomposition and couple these with separation technologies: direct electrolysis and permeation membranes. These two solutions will offer complementary devices that are scalable and that can be deployed easily at locations where hydrogen is required.
随着国际社会关注低碳(或净零)技术的发展,当务之急是开发生产替代燃料的高效和有效途径。全球主要政府已经做出重大承诺,将氢气用作未来燃料,并提出了几种可再生路线,以生产大量氢气用于运输以及家庭和工业环境。然而,氢的运输和储存是在可以设想广泛采用氢之前需要解决的问题。作为能量载体,具有显著氢含量的氨被认为是有吸引力的,因为这种氢载体在工业上大量生产并且具有国际运输基础设施。氨目前的缺点是,氨的合成具有很大的碳足迹,依赖于蒸汽甲烷重整来生产合成氨所需的氢气。假设可以生产绿色氨,剩下的问题是用于氨的催化分解的有效地球丰富材料的可用性,以及所得气流的分离。在这个项目中,我们将开发新的氨分解催化剂,并将其与分离技术相结合:直接电解和渗透膜。这两种解决方案将提供互补的设备,这些设备是可扩展的,可以在需要氢气的地方轻松部署。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Skinner其他文献

Discovery of New-Structure-Type, Rare-Earth-Free Oxide-ion Conductors Ca3Ga4O9 and a Hexagonal Perovskite Derivative
发现新型结构、无稀土氧化物离子导体 Ca3Ga4O9 和六方钙钛矿衍生物
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuta Yasui;Kotaro Fujii;Masatomo Yashima;Yu Zhou;Stephen Skinner
  • 通讯作者:
    Stephen Skinner
Kieran Dolin, A Critical Introduction to Law and Literature
Revolutionizing clean energy labs: Robotic imitation learning for efficient fabrication AI-powered electrical units assembly platform
革新清洁能源实验室:用于高效制造的机器人模仿学习——人工智能驱动的电气单元组装平台
  • DOI:
    10.1016/j.egyai.2025.100517
  • 发表时间:
    2025-09-01
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Xi Xu;Yijun Gu;Tianyi Zhang;Jiwen Yu;Stephen Skinner
  • 通讯作者:
    Stephen Skinner
Combined Cr and Mo poisoning of (La,Sr)(Co,Fe)O<sub>3 − δ</sub> solid oxide fuel cell cathodes at the nanoscale
  • DOI:
    10.1016/j.ssi.2015.12.030
  • 发表时间:
    2016-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Na Ni;Stephen Skinner
  • 通讯作者:
    Stephen Skinner
Comparison of steam and dry reforming adsorption kinetics in solid oxide fuel cells
固体氧化物燃料电池中蒸汽重整和干重整吸附动力学的比较
  • DOI:
    10.1016/j.fuel.2025.134413
  • 发表时间:
    2025-05-15
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Saeed Moarrefi;Mohan Jacob;Nilay Shah;Stephen Skinner;Weiwei Cai;Liyuan Fan
  • 通讯作者:
    Liyuan Fan

Stephen Skinner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Skinner', 18)}}的其他基金

Materials: Investigating Ion Transport in Oxide Thin Films for Energy Applications
材料:研究能源应用氧化物薄膜中的离子传输
  • 批准号:
    BB/X005011/1
  • 财政年份:
    2022
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Research Grant
Solid Oxide Interfaces for Faster Ion Transport (SOIFIT)
用于更快离子传输的固体氧化物接口 (SOIFIT)
  • 批准号:
    EP/P026478/1
  • 财政年份:
    2017
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Research Grant
Understanding the critical role of interfaces and surfaces in energy materials
了解界面和表面在能源材料中的关键作用
  • 批准号:
    EP/R002010/1
  • 财政年份:
    2017
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Research Grant
High Five: Resolution, Sensitivity, in operando Control, Ultra High Vacuum and Ion Sectioning in a Single Instrument
高五:分辨率、灵敏度、操作控制、超高真空和离子切片在一台仪器中
  • 批准号:
    EP/P029914/1
  • 财政年份:
    2017
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Research Grant
Control of structure, strain and chemistry: a route to designer fuel cell interfaces
结构、应变和化学的控制:设计燃料电池接口的途径
  • 批准号:
    EP/M014142/1
  • 财政年份:
    2015
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Research Grant
Multiscale in-situ characterisation of degradation and reactivity in solid oxide fuel cells
固体氧化物燃料电池降解和反应性的多尺度原位表征
  • 批准号:
    EP/J003085/1
  • 财政年份:
    2012
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Research Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目

相似海外基金

New approaches to understanding hydrogen embrittlement in steels
理解钢中氢脆的新方法
  • 批准号:
    2897405
  • 财政年份:
    2023
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Studentship
New Approaches to Understanding Hydrogen Embrittlement of Steels
了解钢氢脆的新方法
  • 批准号:
    2790946
  • 财政年份:
    2023
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Studentship
Novel Agent-based Approaches for UK Whole Energy Systems Modelling for UK Net-zero Emissions by 2050, with a Focus on Hydrogen Integration
英国整体能源系统建模的基于代理的新型方法,到 2050 年实现英国净零排放,重点关注氢整合
  • 批准号:
    2891033
  • 财政年份:
    2023
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Studentship
Development of multi-scale in situ approaches to understand hydrogen embrittlement of engineering alloys at cryogenic temperatures
开发多尺度原位方法来了解工程合金在低温下的氢脆
  • 批准号:
    2897962
  • 财政年份:
    2023
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Studentship
Pharmacological and Chemical Approaches to Repurpose an Antiepileptic for Glioblastoma Treatment
重新利用抗癫痫药治疗胶质母细胞瘤的药理学和化学方法
  • 批准号:
    10620699
  • 财政年份:
    2022
  • 资助金额:
    $ 32.16万
  • 项目类别:
Pharmacological and Chemical Approaches to Repurpose an Antiepileptic for Glioblastoma Treatment
重新利用抗癫痫药治疗胶质母细胞瘤的药理学和化学方法
  • 批准号:
    10412617
  • 财政年份:
    2022
  • 资助金额:
    $ 32.16万
  • 项目类别:
Chemical approaches to selectively target beta-rich amyloids
选择性靶向富含β淀粉样蛋白的化学方法
  • 批准号:
    10461957
  • 财政年份:
    2021
  • 资助金额:
    $ 32.16万
  • 项目类别:
Chemical approaches to selectively target beta-rich amyloids
选择性靶向富含β淀粉样蛋白的化学方法
  • 批准号:
    10317223
  • 财政年份:
    2021
  • 资助金额:
    $ 32.16万
  • 项目类别:
Exploring synergies between model-based systems engineering and current hydrogen modeling approaches to advance the integration of green hydrogen into existing energy systems
探索基于模型的系统工程和当前氢建模方法之间的协同作用,以推动绿色氢融入现有能源系统
  • 批准号:
    563136-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 32.16万
  • 项目类别:
    Alliance Grants
Chemical approaches to selectively target beta-rich amyloids
选择性靶向富含β淀粉样蛋白的化学方法
  • 批准号:
    10626136
  • 财政年份:
    2021
  • 资助金额:
    $ 32.16万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了