BubblEs for TArgeting and TReatment of biOfilm InfectioNs (BETATRON)

用于靶向和治疗生物膜感染的气泡 (BETATRON)

基本信息

  • 批准号:
    EP/W033151/1
  • 负责人:
  • 金额:
    $ 124.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Antimicrobials, commonly known as antibiotics, are becoming less effective because of resistance. Antibiotic resistance is when bacteria or other microbes change so that antibiotics no longer work to treat infections. Antibiotic resistance is a global problem that is being made worse by antibiotic overuse. We can combat antibiotic resistance by developing better antibiotics as well as improving the way we use existing ones. Patients will continue to need antibiotics, particularly to treat serious infections, like sepsis, so we need to improve how they are used. Right now, 'broad-spectrum' antibiotics, that kill a wide range of bacteria, are often given in high doses to ensure that enough antibiotic reaches the microbes at the site of infection. Much higher doses than would be needed if we could deliver antibiotics just at the site of infection are used. These antibiotics kill many of the beneficial 'resident' bacteria living in our bodies, which drives resistance. It would be much better if we could use a 'personalised medicine' approach where antibiotics are delivered locally, at the site of infection, at doses necessary to treat the problem. By giving lower doses of targeted treatment and avoiding exposure of the normal colonising bacteria to antibiotics, our vision is to improve health outcomes and reduce the selection of resistant microbes.Our project involves using tiny bubbles similar to those already used with ultrasound scanning to study the flow of blood through the heart and are currently being tested to treat cancers. These bubbles are given by injection into a vein. We propose to develop bubbles so that they can deliver antibiotics directly to a site of infection. The bubbles can also be burst using higher powered ultrasound, which is another possible way to kill bacteria. The bubbles are tiny, not much bigger than the bacteria, and will be coated with molecules that will allow the bubbles to stick to the surface of specific bacteria. This is known as 'molecular targeting'. By combining bubbles with ultrasound to trigger the release of antibiotics just at the site of infection, we aim to reduce the amount of antibiotics required to kill bacteria, without killing the helpful bacteria that live elsewhere in the body. Antibiotics often fail because the bacteria create their own local environment, the "biofilm", full of sticky chemicals, which also reduces the killing effects of antibiotics. Our approach will harness the energy released when an ultrasound pulse bursts bubbles to help drive drugs deep into this "biofilm" and hence help kill bacteria more effectively. In addition to getting more antibiotic into a biofilm, these drug-loaded bubbles will allow us to deliver new types of drugs, e.g. antimicrobial peptides (AMPs). AMPs are very effective at killing bacteria, but many cannot be given in the usual way, via a drip, into a vein to treat infections because they tend to be broken down in the blood before getting to the infection site. We can overcome this problem by loading the AMPs into tiny protective capsules attached to the bubbles and release them where/when they are required. Finally, we plan to investigate if bacteria can be released from their local biofilm environment using bubbles plus ultrasound. Here we will harness the mechanical energy released by bursting bubbles to break up the biofilm. The bacteria released from the biofilm are known as 'planktonic' and are more susceptible to conventional antibiotic treatments. In summary, we propose to:1. Develop new targeting agents to bind bubbles to bacteria and new drug-loaded cargoes to kill bacteria/ destroy biofilms.2. See if bubbles and ultrasound can be used together to deliver drugs into bacterial biofilms and kill bacteria more effectively.3. Use our approaches to deliver drugs that cannot currently be used to treat patients because they are broken down in the blood.
抗菌剂,俗称抗生素,由于耐药性而变得不那么有效。抗生素耐药性是指细菌或其他微生物发生变化,使抗生素不再有效治疗感染。抗生素耐药性是一个全球性的问题,由于抗生素的过度使用而变得更加严重。我们可以通过开发更好的抗生素以及改进我们使用现有抗生素的方式来对抗抗生素耐药性。患者将继续需要抗生素,特别是治疗严重感染,如败血症,所以我们需要改进它们的使用方式。目前,可以杀死多种细菌的广谱抗生素通常被大剂量使用,以确保足够的抗生素到达感染部位的微生物手中。使用的剂量比我们在感染部位提供抗生素所需的剂量要高得多。这些抗生素会杀死许多生活在我们体内的有益的“常驻”细菌,而这些细菌会导致耐药性。如果我们能使用一种“个性化药物”的方法,在感染部位按治疗问题所需的剂量在当地注射抗生素,那就更好了。通过给予较低剂量的靶向治疗和避免正常定植细菌暴露于抗生素,我们的愿景是改善健康结果,减少耐药微生物的选择。我们的项目涉及使用微泡,类似于已经用于超声波扫描的微泡,以研究血液通过心脏的流动,目前正在测试用于治疗癌症。这些气泡是通过向静脉注射的方式提供的。我们建议开发气泡,这样它们就可以将抗生素直接输送到感染部位。这些气泡也可以用更高功率的超声波来破裂,这是另一种可能的杀菌方法。这些气泡很小,比细菌大不了多少,并将被分子覆盖,使气泡附着在特定细菌的表面。这就是所谓的“分子靶向”。通过将气泡与超声波结合在一起,在感染部位触发抗生素的释放,我们的目标是减少杀死细菌所需的抗生素数量,而不会杀死生活在身体其他地方的有益细菌。抗生素经常失败,因为细菌创造了自己的局部环境--充满粘性化学物质的生物膜,这也降低了抗生素的杀伤力。我们的方法将利用超声脉冲破裂气泡时释放的能量来帮助药物深入到这种“生物膜”中,从而帮助更有效地杀灭细菌。除了让更多的抗生素进入生物膜外,这些载药气泡还将使我们能够输送新型药物,例如抗菌肽(AMP)。AMP在杀灭细菌方面非常有效,但许多AMP不能以通常的方式,通过滴注进入静脉治疗感染,因为它们往往在到达感染部位之前在血液中分解。我们可以通过将AMP装载到附着在气泡上的微小保护性胶囊中,并在需要的地方/时间释放它们来克服这个问题。最后,我们计划调查是否可以使用气泡和超声波从当地的生物膜环境中释放细菌。在这里,我们将利用破裂的气泡释放的机械能来分解生物膜。从生物膜中释放出的细菌被称为“浮游性”,对传统的抗生素治疗更敏感。综上所述,我们建议:1.开发新的靶向剂,将气泡与细菌结合,并开发新的载药货物,以杀灭细菌/破坏生物膜。看看气泡和超声波是否可以一起用来将药物输送到细菌生物膜中,并更有效地杀灭细菌。使用我们的方法提供目前不能用于治疗患者的药物,因为它们在血液中被分解。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Single Short 'Tone Burst' Results in Optimal Drug Delivery to Tumours Using Ultrasound-Triggered Therapeutic Microbubbles.
  • DOI:
    10.3390/pharmaceutics14030622
  • 发表时间:
    2022-03-11
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Ingram N;McVeigh LE;Abou-Saleh RH;Batchelor DVB;Loadman PM;McLaughlan JR;Markham AF;Evans SD;Coletta PL
  • 通讯作者:
    Coletta PL
QCM-D Investigations on Cholesterol-DNA Tethering of Liposomes to Microbubbles for Therapy.
  • DOI:
    10.1021/acs.jpcb.2c07256
  • 发表时间:
    2023-03-23
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Armistead, Fern J.;Batchelor, Damien V. B.;Johnson, Benjamin R. G.;Evans, Stephen D.
  • 通讯作者:
    Evans, Stephen D.
Protein-conjugated microbubbles for the selective targeting of S. aureus biofilms.
  • DOI:
    10.1016/j.bioflm.2022.100074
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    Caudwell JA;Tinkler JM;Johnson BRG;McDowall KJ;Alsulaimani F;Tiede C;Tomlinson DC;Freear S;Turnbull WB;Evans SD;Sandoe JAT
  • 通讯作者:
    Sandoe JAT
Spectrophotometric Analysis and Optimization of 2D Gold Nanosheet Formation.
  • DOI:
    10.1021/acs.jpcc.2c07582
  • 发表时间:
    2023-02-16
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Fox, Joseph;Newham, George;Bushby, Richard J.;Valleley, Elizabeth M. A.;Coletta, Patricia Louise;Evans, Stephen D.
  • 通讯作者:
    Evans, Stephen D.
Gold Nanotapes and Nanopinecones in a Quantitative Lateral Flow Assay for the Cancer Biomarker Carcinoembryonic Antigen.
  • DOI:
    10.1021/acsanm.3c03053
  • 发表时间:
    2023-10-13
  • 期刊:
  • 影响因子:
    5.9
  • 作者:
    Fox, Joseph;Batchelor, Damien V. B.;Roberts, Holly;Moorcroft, Samuel C. T.;Valleley, Elizabeth M. A.;Coletta, Patricia Louise;Evans, Stephen D.
  • 通讯作者:
    Evans, Stephen D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Evans其他文献

Re: Biomedical Informatics Approaches to Identifying Drug-Drug Interactions: Application to Insulin Secretagogues.
回复:识别药物间相互作用的生物医学信息学方法:在胰岛素促分泌剂中的应用。
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    A. Root;I. Douglas;Stephen Evans
  • 通讯作者:
    Stephen Evans
A concurrent cohort study of oral contraceptive users from the VAMP research bank
VAMP 研究银行对口服避孕药使用者进行的同期队列研究
  • DOI:
    10.1002/pds.2630020107
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Y. Lis;W. Spitzer;R. Mann;J. Chukwujindu;M. Thorogood;Stephen Evans;S. Suissa;J. LeLorier
  • 通讯作者:
    J. LeLorier
爆発性芳香族化合物の簡便・迅速な検出に向けたTNT認識ペプチド修飾量子ドットの作製
制备 TNT 识别肽修饰量子点,用于简单快速检测爆炸性芳香族化合物
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    児美川拓実;Abiral Tamang;田中祐圭;Kevin Critchley;Stephen Evans;大河内美奈
  • 通讯作者:
    大河内美奈
Designing email tasks for the Business English classroom: Implications from a study of Hong Kong’s key industries
  • DOI:
    10.1016/j.esp.2012.03.001
  • 发表时间:
    2012-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Stephen Evans
  • 通讯作者:
    Stephen Evans
Potential pitfalls associated with using a cut-point of 12 lymph nodes as a quality of care measure for patients with NO adenocarcinoma of the colon
  • DOI:
    10.1016/j.jamcollsurg.2007.06.179
  • 发表时间:
    2007-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark B. Slidell;Nita Ahuja;Rebecca Evangelista;John White;Stephen Evans;Peter Kreishman;David Chang
  • 通讯作者:
    David Chang

Stephen Evans的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Evans', 18)}}的其他基金

Rapid, Multiplexed, Testing for Urinary Tract Infections
尿路感染的快速、多重检测
  • 批准号:
    EP/X013588/1
  • 财政年份:
    2023
  • 资助金额:
    $ 124.84万
  • 项目类别:
    Research Grant
Microbubble Enhanced Imaging and Therapeutic Delivery
微泡增强成像和治疗递送
  • 批准号:
    EP/P023266/1
  • 财政年份:
    2017
  • 资助金额:
    $ 124.84万
  • 项目类别:
    Research Grant
Microbubbles for Hydrophobic Drug Delivery and Enhanced Diagnostics; Towards Personalised Healthcare for the Treatment of Colorectal Cancer
用于疏水药物输送和增强诊断的微泡;
  • 批准号:
    EP/K023845/1
  • 财政年份:
    2013
  • 资助金额:
    $ 124.84万
  • 项目类别:
    Research Grant
Engineering Therapeutic Microbubbles
工程治疗微泡
  • 批准号:
    EP/I000623/1
  • 财政年份:
    2010
  • 资助金额:
    $ 124.84万
  • 项目类别:
    Research Grant
Statistical methods for analysis of adverse effects associated with drugs
分析药物不良反应的统计方法
  • 批准号:
    G0600621/1
  • 财政年份:
    2007
  • 资助金额:
    $ 124.84万
  • 项目类别:
    Research Grant
In vitro assembly of bacterial peptidoglycan in tethered lipid bilayer membranes
束缚脂质双层膜中细菌肽聚糖的体外组装
  • 批准号:
    BB/D00943X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 124.84万
  • 项目类别:
    Research Grant
Protein Manipulation in Lipid Bilayers using Surface Acoustic Waves
使用表面声波操纵脂质双层中的蛋白质
  • 批准号:
    EP/E015530/1
  • 财政年份:
    2006
  • 资助金额:
    $ 124.84万
  • 项目类别:
    Research Grant

相似国自然基金

Pre-targeting/Click反应介导的自体循环干细胞在心脏缺血损伤修复中的应用及机制研究
  • 批准号:
    81873493
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
APO-miR(multi-targeting apoptosis-regulatory miRNA)在前列腺癌中的表达和作用
  • 批准号:
    81101529
  • 批准年份:
    2011
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Targeting Inhibitory kappa B kinase alpha (IKKalpha): a new treatment paradigm for inflammatory-driven cancers
靶向抑制性 kappa B 激酶 alpha (IKKalpha):炎症驱动的癌症的新治疗范例
  • 批准号:
    MR/Y015479/1
  • 财政年份:
    2024
  • 资助金额:
    $ 124.84万
  • 项目类别:
    Research Grant
Targeting early-life intervention for treatment of neurodevelopmental disorders
针对早期生命干预治疗神经发育障碍
  • 批准号:
    MR/Y014529/1
  • 财政年份:
    2024
  • 资助金额:
    $ 124.84万
  • 项目类别:
    Research Grant
Development of novel treatment targeting the HGF/MET pathway in metastatic CRPC
针对转移性 CRPC 中 HGF/MET 通路的新型治疗方法的开发
  • 批准号:
    23K08737
  • 财政年份:
    2023
  • 资助金额:
    $ 124.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a novel treatment targeting the immunosuppressive mechanism of MDSC for canine malignant melanoma
针对MDSC免疫抑制机制开发犬恶性黑色素瘤新疗法
  • 批准号:
    23K05561
  • 财政年份:
    2023
  • 资助金额:
    $ 124.84万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of treatment and prevention methods for Alzheimer's disease targeting orexin neurons
针对食欲素神经元的阿尔茨海默病治疗和预防方法的研究
  • 批准号:
    23K14364
  • 财政年份:
    2023
  • 资助金额:
    $ 124.84万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Host Defense Small Molecule Development for COVID-19 Treatment by Targeting Lysosome
通过靶向溶酶体治疗 COVID-19 的宿主防御小分子开发
  • 批准号:
    10735492
  • 财政年份:
    2023
  • 资助金额:
    $ 124.84万
  • 项目类别:
Targeting NuoD for the treatment of H. pylori
靶向 NuoD 治疗幽门螺杆菌
  • 批准号:
    10659783
  • 财政年份:
    2023
  • 资助金额:
    $ 124.84万
  • 项目类别:
Targeting the CCR6-CCL20 pathway for treatment of psoriatic joint and entheseal inflammation
靶向 CCR6-CCL20 通路治疗银屑病关节和附着点炎症
  • 批准号:
    10699251
  • 财政年份:
    2023
  • 资助金额:
    $ 124.84万
  • 项目类别:
Selective targeting of a Rho GTPase mutant for peripheral T cell lymphoma treatment
选择性靶向 Rho GTPase 突变体治疗外周 T 细胞淋巴瘤
  • 批准号:
    10721439
  • 财政年份:
    2023
  • 资助金额:
    $ 124.84万
  • 项目类别:
“Pharmacologic targeting of NR4A1 and NR4A2 to activate glioblastoma treatment response”
– NR4A1 和 NR4A2 的药理学靶向激活胶质母细胞瘤治疗反应 –
  • 批准号:
    10744524
  • 财政年份:
    2023
  • 资助金额:
    $ 124.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了