MCSIMus: Monte Carlo Simulation with Inline Multiphysics
MCSIMus:使用内联多物理场进行蒙特卡罗仿真
基本信息
- 批准号:EP/W037165/1
- 负责人:
- 金额:$ 44.47万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nuclear reactors in various forms are increasingly prominent in the context of net zero. However, stringent safety standards and advanced reactor designs necessitate ever-greater certainty and understanding in reactor physics and operation. As physical experimentation becomes more expensive, nuclear engineering relies increasingly on high-fidelity simulation of reactors. Traditionally, resolving different physical phenomena in a reactor (such as neutron transport or thermal-hydraulics) proceeded by assuming only a weak dependence upon other phenomena due to limits on computational power. Such approximations were allowable when additional conservatisms were included in reactor designs. However, more economical or sophisticated reactor designs render such approximations invalid, and reactor designers must be able to resolve the interplay between each physical phenomenon. This poses a challenge to reactor physicists due to vastly increased computational costs of multi-physics calculations, as well as the risks of numerical instabilities - these are essentially non-physical behaviours which are purely an artefact of simulation.This proposal aims to provide the basis of new computational approaches in nuclear engineering which are both substantially cheaper and more stable than present multi-physics approaches. Traditional methods tend to have one tool fully resolve one phenomenon, pass the information to another tool which resolves a second phenomenon, and then pass this updated information back to the first tool and repeat until (hopefully) the results converge. This proposal hopes to explore a slightly simpler approach, where information is exchanged between different solvers before each has fully resolved its own physics, extending this to many of the phenomena of interest to a reactor designer. Preliminary analysis suggests that this approach should be vastly more stable and computationally efficient than previous methods. The investigations will be carried out using home-grown numerical tools developed at the University of Cambridge which are designed for rapid prototyping of new ideas and algorithms. The final result is anticipated to transform the nuclear industry's approach to multi-physics calculations and greatly accelerate our ability to explore and design more advanced nuclear reactors.
各种形式的核反应堆在净零的背景下日益凸显。然而,严格的安全标准和先进的反应堆设计要求对反应堆物理和操作有更大的确定性和了解。随着物理实验变得越来越昂贵,核工程越来越依赖于反应堆的高保真模拟。传统上,由于计算能力的限制,解决反应堆中的不同物理现象(如中子输运或热工水力学)仅通过假设对其他现象的弱依赖来进行。当反应堆设计中包括额外的保守性时,这种近似是允许的。然而,更经济或复杂的反应堆设计使这种近似无效,反应堆设计者必须能够解决每种物理现象之间的相互作用。这对反应堆物理学家提出了挑战,因为多物理场计算的计算成本大大增加,以及数值不稳定性的风险-这些本质上是非物理行为,纯粹是模拟的人工制品。传统方法倾向于让一个工具完全解决一个现象,将信息传递给另一个解决第二个现象的工具,然后将此更新的信息传递回第一个工具并重复,直到(希望)结果收敛。该提案希望探索一种稍微简单的方法,在每个求解器完全解决自己的物理问题之前,在不同的求解器之间交换信息,将其扩展到反应堆设计者感兴趣的许多现象。初步分析表明,这种方法应该比以前的方法更稳定,计算效率更高。这些调查将使用剑桥大学开发的本土数值工具进行,这些工具是为新思想和算法的快速原型设计的。最终结果有望改变核工业的多物理场计算方法,并大大加快我们探索和设计更先进核反应堆的能力。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Random Ray Method Versus Multigroup Monte Carlo: The Method of Characteristics in OpenMC and SCONE
随机射线方法与多组蒙特卡罗:OpenMC 和 SCONE 中的特征方法
- DOI:10.1080/00295639.2023.2270618
- 发表时间:2023
- 期刊:
- 影响因子:1.2
- 作者:Cosgrove P
- 通讯作者:Cosgrove P
A memory-efficient neutron noise algorithm for reactor physics
用于反应堆物理的内存高效中子噪声算法
- DOI:10.1016/j.anucene.2024.110450
- 发表时间:2024
- 期刊:
- 影响因子:1.9
- 作者:Cosgrove P
- 通讯作者:Cosgrove P
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Cosgrove其他文献
The British Steam Generating Heavy Water Reactor: A reassessment with thermal hydraulic-neutronic coupling
- DOI:
10.1016/j.nucengdes.2022.111880 - 发表时间:
2022-09-01 - 期刊:
- 影响因子:
- 作者:
Simon Billiet;Paul Cosgrove;Nathaniel Read - 通讯作者:
Nathaniel Read
Design space exploration for salt-cooled reactor system: Part I – Thermal hydraulic design
- DOI:
10.1016/j.nucengdes.2022.111779 - 发表时间:
2022-07-01 - 期刊:
- 影响因子:
- 作者:
Zhiyao Xing;Paul Cosgrove;Marat Margulis;Eugene Shwageraus - 通讯作者:
Eugene Shwageraus
Paul Cosgrove的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
DDH头臼匹配性三维空间形态表征及PAO
手术髋臼重定向Monte Carlo随机最优控
制
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于鞘层Monte Carlo粒子仿真模型的非稳态真空弧等离子体羽流的内外流一体化数值模拟研究
- 批准号:12372297
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
复杂空间上具有特殊约束的Monte Carlo方法
- 批准号:12371269
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
基于格子Boltzmann和Monte Carlo方法的中子输运本构关系及低维控制方程研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
在大数据和复杂模型背景下探究更有效的Markov chain Monte Carlo算法
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于Monte Carlo模拟的铒基稀土高掺杂纳米材料上转换发光过程的机理研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
嵌段共聚物在软硬壁组成的受限空间中的诱导自组装行为的Monte Carlo 研究
- 批准号:21863010
- 批准年份:2018
- 资助金额:41.0 万元
- 项目类别:地区科学基金项目
间接优化的高效Monte Carlo声传播研究
- 批准号:61772458
- 批准年份:2017
- 资助金额:16.0 万元
- 项目类别:面上项目
基于Monte Carlo法强化管表面颗粒-析晶垢形成机理及预测模型研究
- 批准号:51606049
- 批准年份:2016
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
任意各向异性三维直流电阻率巷道超前探测的并行Monte Carlo方法研究
- 批准号:41674076
- 批准年份:2016
- 资助金额:70.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 44.47万 - 项目类别:
Standard Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
- 批准号:
2335904 - 财政年份:2024
- 资助金额:
$ 44.47万 - 项目类别:
Continuing Grant
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
- 批准号:
2340586 - 财政年份:2024
- 资助金额:
$ 44.47万 - 项目类别:
Continuing Grant
Transfer Learning for Monte Carlo Methods
蒙特卡罗方法的迁移学习
- 批准号:
EP/Y022300/1 - 财政年份:2024
- 资助金额:
$ 44.47万 - 项目类别:
Research Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
- 批准号:
2335905 - 财政年份:2024
- 资助金额:
$ 44.47万 - 项目类别:
Continuing Grant
Innovating and Validating Scalable Monte Carlo Methods
创新和验证可扩展的蒙特卡罗方法
- 批准号:
DE240101190 - 财政年份:2024
- 资助金额:
$ 44.47万 - 项目类别:
Discovery Early Career Researcher Award
CIF: Small: Theory and Algorithms for Efficient and Large-Scale Monte Carlo Tree Search
CIF:小型:高效大规模蒙特卡罗树搜索的理论和算法
- 批准号:
2327013 - 财政年份:2023
- 资助金额:
$ 44.47万 - 项目类别:
Standard Grant
Examination of the phase behaviour of liquid crystal molecules in confined systems by Replica-Exchange Monte-Carlo simulations
通过复制交换蒙特卡罗模拟检查受限系统中液晶分子的相行为
- 批准号:
22KJ2724 - 财政年份:2023
- 资助金额:
$ 44.47万 - 项目类别:
Grant-in-Aid for JSPS Fellows
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 44.47万 - 项目类别:
New developments in quasi-Monte Carlo methods through applications of mathematical statistics
数理统计应用准蒙特卡罗方法的新发展
- 批准号:
23K03210 - 财政年份:2023
- 资助金额:
$ 44.47万 - 项目类别:
Grant-in-Aid for Scientific Research (C)