Tropical geometry and the moduli space of Prym varieties
热带几何和 Prym 簇的模空间
基本信息
- 批准号:EP/X002004/1
- 负责人:
- 金额:$ 44.68万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Algebraic geometry is concerned with geometric objects that arise as solutions to polynomial equations. Such objects, known as algebraic varieties, are at the heart of many real-world problems and have been studied since the dawn of maths. In recent decades, it was observed that significant mileage may be gained by stripping away some of the geometry and focusing instead on combinatorial aspects of those object. This pivotal shift in perspective is the basis for tropical geometry and has recently led to major breakthroughs in the geometry of curves, enumerative geometry, combinatorics, mathematical physics, and number theory. The current proposal is concerned with a family of important algebraic groups known as Prym varieties, which play a key role in rationality questions for threefolds, construction of compact hyper-Kähler manifolds , and the birational geometry of the moduli of abelian varieties. Despite numerous attempts by various authors, it is not yet known how to fully construct a compact space classifying them, and what the structure of such a space would be. However, by appealing to tropical tools such as the recently discovered tropical Prym variety, the time is ripe to study Prym varieties through a combination of algebraic, non-archimedean, logarithmic, and combinatorial techniques
代数几何研究的是作为多项式方程的解而出现的几何对象。这类对象被称为代数族,是许多现实世界问题的核心,自数学诞生以来就一直被研究。近几十年来,人们观察到,通过剥离一些几何图形,转而专注于这些对象的组合方面,可以获得显著的里程数。这一关键的视角转变是热带几何的基础,最近在曲线几何、计数几何、组合数学、数学物理和数论方面取得了重大突破。目前的建议涉及一族重要的代数群,称为Prym簇,它们在三重合理性问题、紧致超Kähler流形的构造以及交换簇的模的二元几何中起着关键作用。尽管不同的作者进行了多次尝试,但人们还不知道如何完全构建一个对它们进行分类的紧凑空间,以及这样一个空间的结构会是什么。然而,借助于最近发现的热带Prym品种等热带工具,通过结合代数、非阿基米德、对数和组合技术来研究Prym品种的时机已经成熟
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yoav Len其他文献
Lifting tropical bitangents
提升热带双线
- DOI:
10.1016/j.jsc.2019.02.015 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yoav Len;H. Markwig - 通讯作者:
H. Markwig
Bitangents of tropical plane quartic curves
- DOI:
10.1007/s00209-015-1576-7 - 发表时间:
2015-11-16 - 期刊:
- 影响因子:1.000
- 作者:
Matthew Baker;Yoav Len;Ralph Morrison;Nathan Pflueger;Qingchun Ren - 通讯作者:
Qingchun Ren
Tropical tangents for complete intersection curves
完整相交曲线的热带切线
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:2
- 作者:
N. Ilten;Yoav Len - 通讯作者:
Yoav Len
HYPERELLIPTIC GRAPHS AND METRIZED COMPLEXES
超椭圆图和度量复形
- DOI:
10.1017/fms.2017.13 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Yoav Len - 通讯作者:
Yoav Len
Bitangents of non-smooth tropical quartics
非光滑热带四次曲线的双切线
- DOI:
10.4171/pm/2011 - 发表时间:
2017 - 期刊:
- 影响因子:0.8
- 作者:
H. Lee;Yoav Len - 通讯作者:
Yoav Len
Yoav Len的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Logarithmic enumerative geometry and moduli spaces
对数枚举几何和模空间
- 批准号:
EP/Y037162/1 - 财政年份:2024
- 资助金额:
$ 44.68万 - 项目类别:
Research Grant
Conference: Richmond Geometry Meeting: Geometric Topology and Moduli
会议:里士满几何会议:几何拓扑和模数
- 批准号:
2349810 - 财政年份:2024
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
Novel Approaches to Geometry of Moduli Spaces
模空间几何的新方法
- 批准号:
2401387 - 财政年份:2024
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
Conference: Arithmetic, Birational Geometry, and Moduli
会议:算术、双有理几何和模
- 批准号:
2309181 - 财政年份:2023
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
Conference: Richmond Geometry Meeting: Knots, Moduli, and Strings
会议:里士满几何会议:结、模数和弦
- 批准号:
2240741 - 财政年份:2023
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
Geometry and dynamics in moduli spaces of surfaces
表面模空间中的几何和动力学
- 批准号:
2304840 - 财政年份:2023
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
- 批准号:
23K12949 - 财政年份:2023
- 资助金额:
$ 44.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometry of moduli stacks of Galois representations
伽罗瓦表示的模栈的几何
- 批准号:
2302623 - 财政年份:2023
- 资助金额:
$ 44.68万 - 项目类别:
Standard Grant
Teichmueller dynamics and the birational geometry of moduli space
Teichmueller 动力学和模空间双有理几何
- 批准号:
DE220100918 - 财政年份:2023
- 资助金额:
$ 44.68万 - 项目类别:
Discovery Early Career Researcher Award
Algebraic Geometry and Integrable Systems -- Moduli theory and Equations of Painleve type
代数几何与可积系统——模理论与Painleve型方程
- 批准号:
22H00094 - 财政年份:2022
- 资助金额:
$ 44.68万 - 项目类别:
Grant-in-Aid for Scientific Research (A)