Utilising lone single atoms as model catalysts

利用孤立的单原子作为模型催化剂

基本信息

  • 批准号:
    EP/X012883/1
  • 负责人:
  • 金额:
    $ 51.47万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    已结题

项目摘要

Catalysis, the acceleration of chemical reactions using a catalyst, is used in the production of almost every manufactured product we interact with. Catalysts used industrially allow chemical reactions to happen using less energy and producing less waste, and the catalyst can be retrieved and reused almost endlessly. Understanding and improving catalyst materials are clearly, therefore, vital for current and future green economies. Catalysts can be grouped in to two distinct categories, homogenous catalysts and heterogenous catalysis. A homogenous catalyst shares the same physical state (solid, liquid or gas) as the reactants while heterogeneous catalysts exist in a different physical state to reactants. For example, a homogeneous catalyst could be dissolved in a solvent and help to join together small molecules in the same solvent, while a heterogenous catalyst could be a solid block of metal used to help gas phase molecules react. Homogenous catalysts commonly feature metal atoms as part of larger molecules and overall molecular shape and size has huge implications for their behaviour as catalysts. These catalysts are highly selective for specific reaction pathways from many that reactant molecules can undergo, and as such reduce waste from the unwanted pathways. Homogenous catalysts can operate with very few expensive metal atoms but can be difficult to separate from the final products. This is problematic both because it is hard to achieve high purity for consumer goods likes pharmaceuticals (the catalyst is considered an impurity) and some valuable catalytic material is lost and cannot be reused for later batches. Heterogenous catalysts use small (over 10000 times smaller than the width of a human hair) clusters of very few metal atoms spread over a relatively inert, cheap support material. These catalysts are less selective, so produce more waste, and require larger quantities of expensive metals for the same amount of product. The huge advantage, compared with homogenous analogues, is that the catalyst is easily recovered and separated from the product for re-use in later batches. In the last 5 years, a new approach used to make heterogenous catalysts more attractive - single atom catalysis (SAC) - has become prominent. In SACs single atoms of the expensive metallic material responsible for the catalytic behaviour are spread out, far apart from each other, on a solid support. This is doubly advantageous: it ensures the most efficient utilisation of metals (every single metal atom is a possible catalysis site) and introduces high selectivity (usually associated with homogenous catalysts). Our proposition is that SACs could be tuned similarly to how homogenous catalysts currently are, by attaching small molecular entities directly to the metal atom to control its behaviour. We propose that by attaching different molecules to the metal atoms in carefully chosen SACs their behaviour can be altered, and the reaction pathways that the catalyst selects can be chosen. We will employ ultra-clean vacuum environments and cutting edge techniques housed within them (X-ray standing waves (XSW), photoelectron diffraction (PhD), scanning tunnelling microscopy (STM), temperature programmed desorption (TPD)), supplemented with techniques operating closer to reactor / ambient environments (ambient pressure X-ray photoelectron spectroscopy, ambient pressure XSW, ambient pressure PhD).By combining these techniques, we can follow how the chemical reaction (catalysed by the SAC) happens with spatial precision smaller than the distances between atoms in a conventional catalyst. The fundamental insight we produce will reveal how to tailor the reactivity of SACs, an entirely new method for designing catalysts from their smallest building blocks. By studying these kinds catalysts at this level of detail, we will provide insight into the fundamental chemistry that underpins all heterogenous catalysis.
催化,即使用催化剂加速化学反应,几乎用于我们接触的每一种制造产品的生产。工业上使用的催化剂允许化学反应发生,使用更少的能源和产生更少的废物,催化剂几乎可以无休止地回收和重复使用。因此,理解和改进催化剂材料显然对当前和未来的绿色经济至关重要。催化剂可以分为两类,均相催化剂和多相催化剂。均相催化剂与反应物具有相同的物理状态(固体、液体或气体),而非均相催化剂以与反应物不同的物理状态存在。例如,均相催化剂可以溶解在溶剂中,并有助于在同一溶剂中将小分子连接在一起,而非均相催化剂可以是用于帮助气相分子反应的金属固体块。均相催化剂通常将金属原子作为较大分子的一部分,并且整体分子形状和大小对其作为催化剂的行为具有巨大的影响。这些催化剂对反应物分子可能经历的许多特定反应途径具有高度选择性,因此减少了来自不需要的途径的废物。均相催化剂可以用非常少的昂贵的金属原子操作,但可能难以从最终产物中分离。这是有问题的,因为它很难实现高纯度的消费品,如药品(催化剂被认为是一种杂质),一些有价值的催化材料损失,不能再用于以后的批次。多相催化剂使用的是分布在相对惰性、便宜的载体材料上的非常少的金属原子的小簇(比人的头发丝的宽度小10000倍以上)。这些催化剂的选择性较低,因此产生更多的废物,并且对于相同数量的产品需要更大量的昂贵金属。与均相类似物相比,其巨大优势在于催化剂易于回收并与产品分离,以便在后续批次中重复使用。在过去的5年里,一种新的方法,使多相催化剂更有吸引力-单原子催化(SAC)-已成为突出。在SAC中,负责催化行为的昂贵金属材料的单个原子分散在固体载体上,彼此相距很远。这具有双重优势:它确保了金属的最有效利用(每一个金属原子都是可能的催化位点)并引入了高选择性(通常与均相催化剂相关)。我们的建议是,SAC可以通过将小分子实体直接连接到金属原子上来控制其行为,从而类似于目前的均相催化剂。我们提出,通过将不同的分子连接到精心选择的SAC中的金属原子上,可以改变它们的行为,并且可以选择催化剂选择的反应途径。我们将采用超净真空环境和尖端技术在其中安置(X射线驻波(XSW)、光电子衍射(PhD)、扫描隧道显微镜(STM)、程序升温脱附(TPD)),并辅以更接近反应堆/周围环境的技术(环境压力X射线光电子能谱,环境压力XSW,环境压力PhD)。通过结合这些技术,我们可以跟踪化学反应(由SAC催化)是如何发生的,其空间精度小于传统催化剂中原子之间的距离。我们产生的基本见解将揭示如何定制SAC的反应性,这是一种从最小的构建块设计催化剂的全新方法。通过在这个细节水平上研究这些类型的催化剂,我们将深入了解支撑所有非均相催化的基本化学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Duncan其他文献

Complete Genome Sequence of a Wild-Type Isolate of Caulobacter vibrioides Strain CB2
弧形柄杆菌 CB2 菌株野生型分离株的完整基因组序列
  • DOI:
    10.1128/mra.01215-18
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    D. Scott;Latia Scott;K. Wilson;Keshawn Ross;Damyen Ingram;Tajah Lewter;Jasmine Herring;LaTrice Linton;David Duncan;A. Aikins;B. Ely
  • 通讯作者:
    B. Ely
President's message.
总统致辞。
  • DOI:
    10.1111/j.1442-2026.1996.tb00265.x
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Duncan
  • 通讯作者:
    David Duncan
Government policy and the South African motor vehicle industry 1924–1992
政府政策和南非机动车辆工业 1924-1992
  • DOI:
    10.1080/02589349308704988
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Duncan
  • 通讯作者:
    David Duncan
Continuous Postoperative Antibiotic Irrigation via Catheter System Following Immediate Breast Reconstruction
立即乳房重建后通过导管系统持续术后抗生素冲洗
PRECLINICAL VALIDATION OF THE Trp-p8 ION CHANNEL AS A TARGET FOR BENIGN PROSTATIC HYPERPLASIA
  • DOI:
    10.1016/s0022-5347(08)62049-2
  • 发表时间:
    2008-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Duncan;Ofir Moreno;Mark Frohlich;David Urdal
  • 通讯作者:
    David Urdal

David Duncan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Duncan', 18)}}的其他基金

Utilising lone single atoms as model catalysts
利用孤立的单原子作为模型催化剂
  • 批准号:
    EP/X012883/2
  • 财政年份:
    2024
  • 资助金额:
    $ 51.47万
  • 项目类别:
    Research Grant

相似海外基金

Utilising lone single atoms as model catalysts
利用孤立的单原子作为模型催化剂
  • 批准号:
    EP/X012883/2
  • 财政年份:
    2024
  • 资助金额:
    $ 51.47万
  • 项目类别:
    Research Grant
Integrating population genomics and microbial metagenomics of the lone star tick, an expanding arthropod disease vector
整合孤星蜱(一种不断扩大的节肢动物疾病载体)的群体基因组学和微生物宏基因组学
  • 批准号:
    10360088
  • 财政年份:
    2022
  • 资助金额:
    $ 51.47万
  • 项目类别:
Development of Ultra Low Powered Technology for Hands-Free Lone Worker Panic Alert.
开发用于免提孤独工人恐慌警报的超低功耗技术。
  • 批准号:
    10028197
  • 财政年份:
    2022
  • 资助金额:
    $ 51.47万
  • 项目类别:
    Collaborative R&D
A Stellar Student Experience in the Lone Star State
孤星州一流的学生体验
  • 批准号:
    2219165
  • 财政年份:
    2022
  • 资助金额:
    $ 51.47万
  • 项目类别:
    Standard Grant
Redox-active terminal phosphinidene complexes: lone pair repulsion for the stabilization of hypovalent states
氧化还原活性末端膦配合物:孤对排斥用于稳定低价态
  • 批准号:
    565881-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 51.47万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Using child maintenance as a tool to enhance the circumstances, outcomes and wellbeing of lone mothers and children
使用儿童抚养作为改善单亲母亲和儿童的环境、成果和福祉的工具
  • 批准号:
    2277654
  • 财政年份:
    2019
  • 资助金额:
    $ 51.47万
  • 项目类别:
    Studentship
Protecting Soft Targets against Lone Actor Attacks using Game Theory and Immersive Simulations
使用博弈论和沉浸式模拟保护软目标免受孤独演员攻击
  • 批准号:
    1901721
  • 财政年份:
    2019
  • 资助金额:
    $ 51.47万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: The Psycholinguistic Status of Lone English-Origin Nouns in Spanish: Integrating Sociolinguistic Approaches
博士论文研究:西班牙语中源自英语的孤独名词的心理语言学地位:整合社会语言学方法
  • 批准号:
    1823634
  • 财政年份:
    2018
  • 资助金额:
    $ 51.47万
  • 项目类别:
    Standard Grant
Chain dependent crystal chemistry and temperature-dependent properties of mullite-type related materials with stereo-chemically active lone electron pairs
具有立体化学活性孤电子对的莫来石型相关材料的链依赖晶体化学和温度依赖特性
  • 批准号:
    403459553
  • 财政年份:
    2018
  • 资助金额:
    $ 51.47万
  • 项目类别:
    Research Grants
Experiences and Barriers faced by South Asian Muslim Lone Mothers
南亚穆斯林单亲母亲的经历和面临的障碍
  • 批准号:
    1939031
  • 财政年份:
    2017
  • 资助金额:
    $ 51.47万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了