Developing Devices that use Biotemplated Nanoparticles for Sustainable Energy Generation

开发使用生物模板纳米颗粒实现可持续能源生产的设备

基本信息

  • 批准号:
    EP/X014940/1
  • 负责人:
  • 金额:
    $ 58.42万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

In this project I will take inspiration from Nature to develop sustainable materials that capture light energy, and use these to make solar cells.The UK and EU have set climate neutral targets to reach by 2050. One way to contribute to this is to switch from burning fossil fuels to using renewable energy sources, such as solar power. Plants use complicated photosynthetic molecules to harvest light energy. Unfortunately, these molecules are too delicate for us to use for industrial scale light harvesting. In their place, we use minerals that are able to convert light into electricity in solar cells, or into chemical reactions for catalysis. These optically active nanoparticles are also great for making colourful displays and for imaging. Making these mineral nanoparticles usually needs high temperatures (200 Celsius), dangerous solvents (toluene, acetone, etc.) and toxic elements (e.g. cadmium, lead). To meet the 2050 net-zero targets, we need to develop high-quality light capturing nanoparticles that are made at room temperature in mild solvents (like water) and from safer, more abundant elements. Here I will develop kinder methods of making cadmium and lead-free optically active nanoparticles.Natural biominerals; such as bones, teeth and shells; are made by biomolecules that control the size, shape and type of mineral that is formed with precision. These biomolecules include proteins, which have evolved to specifically bind to and template natural biominerals. The proteins do this in water, at ambient temperatures and using elements that are abundant on Earth. We have not found light harvesting nanoparticles amongst these naturally occurring biominerals, so I will use tools from Nature to make them. I will use biological scaffolds that display a specific protein, and mix billions of them with light harvesting nanoparticles. This will allow me to pick out proteins that specifically bind to the nanoparticle surface. Binding to a surface is not the same as making a particle from solution, so I will improve the binding proteins into templating proteins. The size and elemental composition of an optically active nanoparticle needs to be precisely controlled to get a uniform absorption and emission of light. High-temperature solvent processes are currently used to impart this control. Biotemplating proteins are able to bind to specific sides, corners or edges of a growing crystal through short sections of the protein called peptide sequences. In this way, these peptide sequences control the properties of the biotemplated crystal with precision.There are too many possible peptide sequences to test them all, so I will develop computational tools to help me to select the best ones. I will design sequences to test based on the binders discovered above, and I will monitor the colour of the forming nanoparticles to find the best templating peptides. The best ones will be used to make optically active nanoparticles from water and at room temperature. I will also use computational tools to study how the biomolecules bind to these target surfaces and template the nanoparticles from solution.I will pattern the biotemplating peptides on surfaces. This will allow me to form optically active nanoparticles on surfaces, under mild conditions. These surfaces will be used as components to build devices for light harvesting in solar cells and for catalysis. I will build solar cells using these biotemplated materials, and test their durability and efficiency, showing that they work. I will also test these materials for use in making hydrogen from water, and for use in displays. The colourful materials I develop to do this will also be used to make interesting art-science collaborations to showcase this research. The green methods I will develop here will contribute to ways of making devices for a sustainable climate neutral 2050.
在这个项目中,我将从自然中获得灵感,开发可持续的材料来捕捉光能,并使用这些材料来制造太阳能电池。英国和欧盟已经制定了到2050年实现气候中性的目标。为此做出贡献的一种方式是从燃烧化石燃料转向使用可再生能源,如太阳能。植物使用复杂的光合作用分子来获取光能。不幸的是,这些分子对我们来说太脆弱了,不能用于工业规模的光收集。取而代之的是,我们使用了能够在太阳能电池中将光转化为电能,或转化为化学反应以进行催化的矿物。这些具有光学活性的纳米颗粒也非常适合制作彩色显示器和成像。制造这些矿物纳米颗粒通常需要高温(200摄氏度)、危险溶剂(甲苯、丙酮等)。和有毒元素(如镉、铅)。为了实现2050年净零排放的目标,我们需要开发高质量的捕光纳米颗粒,这些纳米颗粒是在室温下用温和的溶剂(如水)和更安全、更丰富的元素制成的。在这里,我将开发更温和的方法来制造无镉和无铅的光学活性纳米颗粒。天然生物矿物,如骨骼、牙齿和贝壳,是由生物分子制成的,这些生物分子控制着精确形成的矿物的大小、形状和类型。这些生物分子包括蛋白质,这些蛋白质已经进化成专门与天然生物矿物质结合并形成模板。这些蛋白质在水中,在环境温度下,使用地球上丰富的元素来做到这一点。我们还没有在这些自然产生的生物矿物中发现能够捕光的纳米颗粒,所以我将使用大自然的工具来制造它们。我将使用显示特定蛋白质的生物支架,并将数十亿种生物支架与捕光纳米颗粒混合。这将使我能够挑选出特定结合到纳米颗粒表面的蛋白质。结合到表面不同于从溶液中制造颗粒,所以我会将结合蛋白改进为模板蛋白。光学活性纳米粒子的尺寸和元素组成需要精确控制,以获得均匀的光吸收和发射。目前使用高温溶剂法来实现这一控制。生物模板蛋白能够通过一小段称为多肽序列的蛋白质结合到正在生长的晶体的特定边、角或边缘。这样,这些多肽序列就可以精确地控制生物模板晶体的性质。可能的多肽序列太多,无法全部测试,所以我将开发计算工具来帮助我选择最好的。我将根据上面发现的粘合剂设计测试序列,并监测形成的纳米颗粒的颜色,以找到最佳的模板肽。最好的将被用来在室温下从水中制造光学活性纳米颗粒。我还将使用计算工具来研究生物分子如何结合到这些目标表面,并从溶液中模板化纳米颗粒。我将在表面上设计生物模板肽。这将允许我在温和的条件下在表面形成具有光学活性的纳米颗粒。这些表面将被用作组件,用于制造太阳能电池中的光收集设备和催化设备。我将使用这些生物模板材料制造太阳能电池,并测试它们的耐用性和效率,表明它们是有效的。我还将测试这些材料,用于从水中制取氢气,并用于显示器。我为此开发的五颜六色的材料也将被用来制作有趣的艺术-科学合作,以展示这项研究。我将在这里开发的绿色方法将有助于为可持续的2050年气候中立制造设备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Johanna Galloway其他文献

Johanna Galloway的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
  • 批准号:
    32373187
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Wahanu: Helping operators of large fuel storage tanks eliminate fuel contamination within the supply chain, through the use of an in-tank cyclonic separator, sensors and IoT devices, to improve engine fuel efficiency and reduce emissions
Wahanu:通过使用罐内旋风分离器、传感器和物联网设备,帮助大型燃料储罐运营商消除供应链内的燃料污染,从而提高发动机燃油效率并减少排放
  • 批准号:
    10047152
  • 财政年份:
    2023
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Collaborative R&D
Title: Moving medically certifiable AI algorithms from the Cloud and onto the Medi-OS Operating System of Medical Devices to automate, make robust and increase uptake of AI in healthcare: Use-case will be community-based spirometry.
标题:将医学认证的人工智能算法从云端转移到医疗设备的 Medi-OS 操作系统上,以实现自动化、稳健并增加人工智能在医疗保健领域的采用:用例将是基于社区的肺活量测定。
  • 批准号:
    10064449
  • 财政年份:
    2023
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Collaborative R&D
Effects of excessive use of mobile devices on perinatal and neonatal period: integration of questionnaire survey and biomarker measurement experiment
过度使用移动设备对围产期和新生儿期的影响:问卷调查与生物标志物测量实验相结合
  • 批准号:
    23K02037
  • 财政年份:
    2023
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Beacon Sensors and Telerehabilitation to Assess and Improve use of Devices (BeST-AID) for Low Vision
用于评估和改善低视力设备使用的信标传感器和远程康复 (BeST-AID)
  • 批准号:
    10736559
  • 财政年份:
    2023
  • 资助金额:
    $ 58.42万
  • 项目类别:
Development and Use of Devices for Ergonomic Assessment and Comfort Enhancement in Industrial Environments
工业环境中人体工程学评估和舒适度增强设备的开发和使用
  • 批准号:
    RGPIN-2019-05240
  • 财政年份:
    2022
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Discovery Grants Program - Individual
Efficacy testing of point of use water treatment devices for low-resource contexts
资源匮乏环境下使用点水处理装置的功效测试
  • 批准号:
    575075-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 58.42万
  • 项目类别:
    University Undergraduate Student Research Awards
Development and Use of Devices for Ergonomic Assessment and Comfort Enhancement in Industrial Environments
工业环境中人体工程学评估和舒适度增强设备的开发和使用
  • 批准号:
    RGPIN-2019-05240
  • 财政年份:
    2021
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Discovery Grants Program - Individual
Graphene-enhanced thermoplastic products for transportation industries and electronic devices: importance of processing, UV resistance, weatherablity and use of recycled materials
用于运输行业和电子设备的石墨烯增强热塑性产品:加工的重要性、抗紫外线性、耐候性和回收材料的使用
  • 批准号:
    538482-2018
  • 财政年份:
    2021
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Collaborative Research and Development Grants
A synthetic signaling pathway engineering platform for creating precision cell-based sense-and-response devices
用于创建基于细胞的精密传感和响应设备的合成信号通路工程平台
  • 批准号:
    10280787
  • 财政年份:
    2021
  • 资助金额:
    $ 58.42万
  • 项目类别:
A synthetic signaling pathway engineering platform for creating precision cell-based sense-and-response devices
用于创建基于细胞的精密传感和响应设备的合成信号通路工程平台
  • 批准号:
    10459525
  • 财政年份:
    2021
  • 资助金额:
    $ 58.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了