Engineering saline resistance in land plants

陆地植物的工程抗盐性

基本信息

  • 批准号:
    EP/X019179/1
  • 负责人:
  • 金额:
    $ 25.77万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Globally, agriculture requires 70% of yearly global freshwater consumption and utilises 50% of habitable land. In order to ensure food security for the growing population, whilst incorporating sustainable agricultural practices to mitigate climate change, we must develop innovative approaches to maximise the efficiency of food production. Desirable traits are often found in wild or ancestral crop species, which have not been selected for in modern crop varieties, and subsequently lost. The discovery and transfer of these beneficial traits is a promising route for scientists to enhance crop resilience to biotic and abiotic stresses. A highly desirable traits is the capacity to filter salts from entering plant tissues, allowing them to utilise saline water which would normally kill plants. This is achieved in marine algae (seaweeds) via modifications of polysaccharides that form their extracellular matrices. The direct transfer of these modifications into crop plants is not possible due to the different underlying biochemistry between plants and algae. Fortuitously, a similar modification has been found within polysaccharides of seagrasses. Seagrasses are closely related to terrestrial crop plants, but they returned to the marine environment. The shared morphological traits of seagrasses and crops allows us to transfer these traits between them. Additionally, the recent sequencing of the seagrass Zostera genome has revealed candidate genes for this modification, and possible approaches towards the transfer of this advantageous trait to crop plants. This project will decipher the mechanisms required for saline tolerance in plants and semi-synthetic biomaterials. This will allow us to transfer this biotechnology for filtering charged particles into medical (improved dialysis), industrial (improves reverse osmosis), and agricultural applications (crops that require no freshwater).
在全球范围内,农业需要全球每年淡水消耗量的70%,并使用50%的可居住土地。为了确保不断增长的人口的粮食安全,同时结合可持续的农业实践来减缓气候变化,我们必须开发创新方法,以最大限度地提高粮食生产效率。理想的性状通常存在于野生或祖先作物物种中,这些性状在现代作物品种中没有被选择,随后丢失。这些有益性状的发现和转移是科学家提高作物对生物和非生物胁迫的适应性的一条有前途的途径。一个非常理想的特性是过滤盐进入植物组织的能力,使它们能够利用通常会杀死植物的盐水。这在海藻(海藻)中通过修饰形成其细胞外基质的多糖来实现。由于植物和藻类之间不同的基础生物化学,将这些修饰直接转移到作物植物中是不可能的。幸运的是,在海草的多糖中发现了类似的修饰。海草与陆地作物密切相关,但它们回到了海洋环境。海草和农作物共有的形态特征使我们能够在它们之间转移这些特征。此外,最近对海草Zostera基因组的测序揭示了这种修饰的候选基因,以及将这种有利性状转移到作物植物的可能方法。该项目将破译植物和半合成生物材料耐盐性所需的机制。这将使我们能够将这种过滤带电粒子的生物技术转移到医疗(改善透析),工业(改善反渗透)和农业应用(不需要淡水的作物)中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Torode其他文献

Thomas Torode的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Torode', 18)}}的其他基金

ABC: use of Azolla for Biomining of heavy metals towards a Circular bioeconomy
ABC:利用满江红进行重金属生物采矿,实现循环生物经济
  • 批准号:
    BB/X011739/1
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
    Research Grant

相似海外基金

A Dry Electrode for Universal Accessibility to EEG
用于普遍获取脑电图的干电极
  • 批准号:
    10761609
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
The Renin-Angiotensin System in Air Pollution-Mediated Exacerbation of Obesity.
空气污染介导的肥胖加剧中的肾素-血管紧张素系统。
  • 批准号:
    10654124
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
A novel proteomics approach to identify alcohol-induced changes in synapse-specific presynaptic protein interactions.
一种新的蛋白质组学方法,用于识别酒精引起的突触特异性突触前蛋白质相互作用的变化。
  • 批准号:
    10651991
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
Evaluating the Mechanisms of Afferent Renal Nerve Ablation as a Treatment for Hypertension
评估传入肾神经消融治疗高血压的机制
  • 批准号:
    10604700
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
A decellularized porcine placenta matrix hydrogel for management of radiation-induced proctitis
用于治疗放射性直肠炎的脱细胞猪胎盘基质水凝胶
  • 批准号:
    10599727
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
Central role for skin sensory neurons in anti-helminth immunity
皮肤感觉神经元在抗蠕虫免疫中的核心作用
  • 批准号:
    10665391
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
Sex Differences in Central Neural Activation During Acute Hypernatremia
急性高钠血症期间中枢神经激活的性别差异
  • 批准号:
    10749516
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
Optimizing a Novel AAV Vector to Selectively Influence Seizure Networks In Vivo
优化新型 AAV 载体以选择性影响体内癫痫网络
  • 批准号:
    10740434
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
Development of an RNA-based anticoagulant and antidote for precise on/off coagulation control during cardiovascular procedures
开发基于 RNA 的抗凝剂和解毒剂,用于心血管手术期间精确的开/关凝血控制
  • 批准号:
    10603072
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
Antibacterial and Antithrombotic Catheter Lock Solutions Based on Controlled Release of Nitric Oxide
基于一氧化氮控制释放的抗菌和抗血栓导管锁解决方案
  • 批准号:
    10634183
  • 财政年份:
    2023
  • 资助金额:
    $ 25.77万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了