Classification, STructure, Amenability and Regularity
分类、结构、顺应性和规律性
基本信息
- 批准号:EP/X026647/1
- 负责人:
- 金额:$ 249.34万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Operator algebras arise as families of bounded operators on a Hilbert space, closed under algebraic operations, the Hilbert space adjoint, and under taking limits. There are two main types of operator algebra - von Neumann algebras and C*-algebras - which are closed under pointwise and uniform convergence respectively. Both through the structure of abelian algebras, and also the tools used to work with them, von Neumann algebras have the flavour of measure theory, while C*-algebras are topological in nature. Examples arise wherever mathematics touches Hilbert spaces, so operator algebras occur naturally from group representations, dynamics, mathematical physics, to name but a few.The central theme of this proposal is the structure and classification of amenable C*-algebras, with an emphasis on examples coming from dynamics. This aims for the full C*-algebra analogue of Connes' groundbreaking advances in the structure theory of von Neumann algebras from the 1970's which led to the complete classification of amenable von Neumann algebras (the Connes-Haagerup classification of injective factors) and has remained critical ever since, powering dramatic subsequent developments in measurable dynamics, subfactors and rigidity problems. The proposal seeks to obtain definitive classification theorems for amenable morphisms between C*-algebras together with powerful structure theorems which identify classifiable algebras and morphisms both abstractly and in important families of examples. This will be used to initiate a deep study of quantum symmetries of amenable C*-algebras through a classification of actions of tensor categories, aiming for the profound impact seen in the von Neumann algebraic framework through Jones theory of subfactors.A driving theme throughout the project is the explicit transfer of ideas and techniques from the von Neumann algebraic framework to C*-algebras: the use of von Neumann techniques in C*-algebras.
算子代数是希尔伯特空间上的有界算子族,在代数运算、希尔伯特空间伴随和取极限下是封闭的。算子代数主要有两种类型:von Neumann代数和C*-代数,它们分别在点态收敛和一致收敛下是闭的。通过交换代数的结构,以及使用它们的工具,冯·诺依曼代数具有测度论的味道,而C*-代数本质上是拓扑的。例子出现在数学接触希尔伯特空间的地方,所以算子代数自然地出现在群表示,动力学,数学物理中,仅举几例。这个提议的中心主题是顺从C*-代数的结构和分类,重点是来自动力学的例子。这旨在充分C*-代数模拟康纳斯的突破性进展的结构理论冯诺依曼代数从20世纪70年代,导致了完整的分类顺从冯诺依曼代数(康纳斯-Haagerup分类的内射因子),并一直保持关键至今,供电戏剧性的后续发展可测量的动态,子因子和刚性问题。该建议旨在获得明确的分类定理,顺应态射之间的C*-代数与强大的结构定理,确定可分类的代数和态射的抽象和重要的家庭的例子。这将用于通过张量范畴的作用分类来启动对顺从C*-代数的量子对称性的深入研究,旨在通过子因子的琼斯理论在冯诺依曼代数框架中看到的深刻影响。整个项目的驱动主题是从冯诺依曼代数框架到C*-代数的思想和技术的明确转移:冯·诺依曼技巧在C*-代数中的应用
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stuart White其他文献
35.2 SEX (HORMONES) AS A BIOLOGICAL VARIABLE: NOVEL METHODS FOR EXPLORING NEUROBIOLOGICAL MECHANISMS ACROSS GENDERS
- DOI:
10.1016/j.jaac.2020.07.754 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Elizabeth Shirtcliff;Stuart White;Yoojin Lee;Cecile Ladouceur - 通讯作者:
Cecile Ladouceur
Shift invariant preduals of ℓ 1(ℤ)
- DOI:
10.1007/s11856-012-0040-1 - 发表时间:
2012-03-28 - 期刊:
- 影响因子:0.800
- 作者:
Matthew Daws;Richard Haydon;Thomas Schlumprecht;Stuart White - 通讯作者:
Stuart White
Nuclear dimension and $$\mathcal Z$$ -stability
- DOI:
10.1007/s00222-015-0580-1 - 发表时间:
2015-02-27 - 期刊:
- 影响因子:3.600
- 作者:
Yasuhiko Sato;Stuart White;Wilhelm Winter - 通讯作者:
Wilhelm Winter
$\mathcal Z$-stability and finite dimensional tracial boundaries
$mathcal Z$-稳定性和有限维轨迹边界
- DOI:
10.1093/imrn/rnu001 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Andrew S. Toms;Stuart White;W. Winter - 通讯作者:
W. Winter
Neurobiological basis of reinforcement-based decision making in adults with ADHD treated with lisdexamfetamine dimesylate: Preliminary findings and implications for mechanisms influencing clinical improvement.
使用二甲磺酸赖右苯丙胺治疗的成人 ADHD 强化决策的神经生物学基础:初步发现及其对影响临床改善机制的影响。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:4.8
- 作者:
J. Newcorn;I. Ivanov;B. Krone;Xiaobo Li;S. Duhoux;Stuart White;K. Schulz;A. Bédard;Juan Pedraza;Lenard A Adler;Robert James Blair - 通讯作者:
Robert James Blair
Stuart White的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stuart White', 18)}}的其他基金
Von Neumann techniques in C*-algebras
C* 代数中的冯诺依曼技术
- 批准号:
EP/R025061/2 - 财政年份:2019
- 资助金额:
$ 249.34万 - 项目类别:
Research Grant
Von Neumann techniques in C*-algebras
C* 代数中的冯诺依曼技术
- 批准号:
EP/R025061/1 - 财政年份:2018
- 资助金额:
$ 249.34万 - 项目类别:
Research Grant
相似海外基金
REU Site: Microbial Biofilm Development, Resistance, & Community Structure
REU 网站:微生物生物膜的发展、耐药性、
- 批准号:
2349311 - 财政年份:2025
- 资助金额:
$ 249.34万 - 项目类别:
Continuing Grant
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
$ 249.34万 - 项目类别:
Standard Grant
CAREER: Understanding Processing-Structure-Property Relationships in Co-Axial Wire-Feed, Powder-Feed Laser Directed Energy Deposition
职业:了解同轴送丝、送粉激光定向能量沉积中的加工-结构-性能关系
- 批准号:
2338951 - 财政年份:2024
- 资助金额:
$ 249.34万 - 项目类别:
Standard Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
- 批准号:
2317681 - 财政年份:2024
- 资助金额:
$ 249.34万 - 项目类别:
Standard Grant
Structure-guided optimisation of light-driven microalgae cell factories
光驱动微藻细胞工厂的结构引导优化
- 批准号:
DP240101727 - 财政年份:2024
- 资助金额:
$ 249.34万 - 项目类别:
Discovery Projects
Structure-Focused Multi-task Learning Approach for structural pattern recognition and analysis
用于结构模式识别和分析的以结构为中心的多任务学习方法
- 批准号:
24K20789 - 财政年份:2024
- 资助金额:
$ 249.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Did light dictate ancient diversification of phylogeny and cell structure in the domain bacteria?
光是否决定了细菌领域的古代系统发育和细胞结构的多样化?
- 批准号:
24H00582 - 财政年份:2024
- 资助金额:
$ 249.34万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Structure, Dynamics and Activity of Bacterial Secretosome
细菌分泌体的结构、动力学和活性
- 批准号:
BB/Y004531/1 - 财政年份:2024
- 资助金额:
$ 249.34万 - 项目类别:
Research Grant
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
- 批准号:
EP/Y027906/1 - 财政年份:2024
- 资助金额:
$ 249.34万 - 项目类别:
Research Grant
Understanding the electronic structure landscape in wide band gap metal halide perovskites
了解宽带隙金属卤化物钙钛矿的电子结构景观
- 批准号:
EP/X039285/1 - 财政年份:2024
- 资助金额:
$ 249.34万 - 项目类别:
Research Grant